School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States.
ACS Macro Lett. 2022 May 17;11(5):630-635. doi: 10.1021/acsmacrolett.2c00140. Epub 2022 Apr 18.
Ruthenium alkoxymethylidene complexes have recently come into view as competent species for metathesis copolymerization reactions when coupled with appropriate comonomer targets. Here, we explore the ability of Fischer-type carbenes to participate in cascade alternating metathesis cyclopolymerization (CAMC) through facile terminal alkyne addition. The combination of diyne monomers and an equal feed ratio of low-strain dihydrofuran leads to a controlled chain-growth copolymerization with high degrees of alternation (>97% alternating diads) and produces degradable polymer materials with low dispersities and targetable molecular weights. When combined with enyne monomers, this method is amenable to the synthesis of alternating diblock copolymers that can be fully degraded to short oligomer fragments under aqueous acidic conditions. This work furthers the potential for the generation of functional metathesis materials via Fischer-type ruthenium alkylidenes.
钌烷氧基甲叉络合物与合适的共聚单体目标物结合时,最近成为用于交叉复分解共聚反应的有效物种。在这里,我们通过末端炔烃的加成来探索费歇尔型卡宾参与级联交替复分解环聚合(CAMC)的能力。二炔单体与低应变二氢呋喃的等进料比的组合导致可控的链增长共聚反应,具有高交替度(>97%交替二联体),并产生具有低分散度和目标分子量的可降解聚合物材料。当与烯炔单体结合时,该方法适用于交替嵌段共聚物的合成,在水性酸性条件下可完全降解为短寡聚物片段。这项工作进一步推动了通过费歇尔型钌亚烷基生成功能化复分解材料的潜力。