Suppr超能文献

具有全兼容性、灵活性和鲁棒性的亲和度和惩罚联合约束谱聚类。

Affinity and Penalty Jointly Constrained Spectral Clustering With All-Compatibility, Flexibility, and Robustness.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 May;28(5):1123-1138. doi: 10.1109/TNNLS.2015.2511179. Epub 2016 Feb 18.

Abstract

The existing, semisupervised, spectral clustering approaches have two major drawbacks, i.e., either they cannot cope with multiple categories of supervision or they sometimes exhibit unstable effectiveness. To address these issues, two normalized affinity and penalty jointly constrained spectral clustering frameworks as well as their corresponding algorithms, referred to as type-I affinity and penalty jointly constrained spectral clustering (TI-APJCSC) and type-II affinity and penalty jointly constrained spectral clustering (TII-APJCSC), respectively, are proposed in this paper. TI refers to type-I and TII to type-II. The significance of this paper is fourfold. First, benefiting from the distinctive affinity and penalty jointly constrained strategies, both TI-APJCSC and TII-APJCSC are substantially more effective than the existing methods. Second, both TI-APJCSC and TII-APJCSC are fully compatible with the three well-known categories of supervision, i.e., class labels, pairwise constraints, and grouping information. Third, owing to the delicate framework normalization, both TI-APJCSC and TII-APJCSC are quite flexible. With a simple tradeoff factor varying in the small fixed interval (0, 1], they can self-adapt to any semisupervised scenario. Finally, both TI-APJCSC and TII-APJCSC demonstrate strong robustness, not only to the number of pairwise constraints but also to the parameter for affinity measurement. As such, the novel TI-APJCSC and TII-APJCSC algorithms are very practical for medium- and small-scale semisupervised data sets. The experimental studies thoroughly evaluated and demonstrated these advantages on both synthetic and real-life semisupervised data sets.

摘要

现有的半监督谱聚类方法有两个主要的缺点,即要么不能处理多类监督,要么有时表现出不稳定的效果。为了解决这些问题,本文提出了两种归一化相似性和惩罚联合约束谱聚类框架及其相应的算法,分别称为 I 型相似性和惩罚联合约束谱聚类(TI-APJCSC)和 II 型相似性和惩罚联合约束谱聚类(TII-APJCSC)。TI 指的是 I 型,TII 指的是 II 型。本文的意义有四点。首先,受益于独特的相似性和惩罚联合约束策略,TI-APJCSC 和 TII-APJCSC 都比现有方法更有效。其次,TI-APJCSC 和 TII-APJCSC 都完全兼容三种著名的监督类别,即类别标签、成对约束和分组信息。第三,由于精细的框架归一化,TI-APJCSC 和 TII-APJCSC 非常灵活。通过在小固定区间(0,1]内变化的简单折衷因子,它们可以自适应任何半监督场景。最后,TI-APJCSC 和 TII-APJCSC 都表现出很强的鲁棒性,不仅对成对约束的数量,而且对相似性度量的参数也有很强的鲁棒性。因此,新的 TI-APJCSC 和 TII-APJCSC 算法非常适用于中等规模和小规模的半监督数据集。实验研究在合成和真实半监督数据集上全面评估和验证了这些优势。

相似文献

3
Constrained Clustering With Imperfect Oracles.带不完美预言的约束聚类。
IEEE Trans Neural Netw Learn Syst. 2016 Jun;27(6):1345-57. doi: 10.1109/TNNLS.2014.2387425. Epub 2015 Jan 23.
4
Constrained Multi-View Video Face Clustering.约束多视角视频人脸聚类。
IEEE Trans Image Process. 2015 Nov;24(11):4381-93. doi: 10.1109/TIP.2015.2463223. Epub 2015 Jul 30.
5
Partition Level Constrained Clustering.分区级约束聚类
IEEE Trans Pattern Anal Mach Intell. 2018 Oct;40(10):2469-2483. doi: 10.1109/TPAMI.2017.2763945. Epub 2017 Oct 17.
6
Initialization independent clustering with actively self-training method.采用主动自训练方法的初始化无关聚类
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):17-27. doi: 10.1109/TSMCB.2011.2161607. Epub 2011 Nov 11.
8
Constrained Low-Rank Representation for Robust Subspace Clustering.基于约束低秩表示的鲁棒子空间聚类
IEEE Trans Cybern. 2017 Dec;47(12):4534-4546. doi: 10.1109/TCYB.2016.2618852. Epub 2016 Oct 31.

引用本文的文献

本文引用的文献

1
Collaborative fuzzy clustering from multiple weighted views.多加权视图的协同模糊聚类。
IEEE Trans Cybern. 2015 Apr;45(4):688-701. doi: 10.1109/TCYB.2014.2334595. Epub 2014 Jul 23.
2
Fast graph-based relaxed clustering for large data sets using minimal enclosing ball.基于快速图的使用最小包围球的大数据集松弛聚类
IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):672-87. doi: 10.1109/TSMCB.2011.2172604. Epub 2012 Feb 3.
3
Initialization independent clustering with actively self-training method.采用主动自训练方法的初始化无关聚类
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):17-27. doi: 10.1109/TSMCB.2011.2161607. Epub 2011 Nov 11.
4
Spectral clustering on multiple manifolds.多流形上的谱聚类
IEEE Trans Neural Netw. 2011 Jul;22(7):1149-61. doi: 10.1109/TNN.2011.2147798. Epub 2011 Jun 16.
5
Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm.
IEEE Trans Neural Netw. 1992;3(5):787-93. doi: 10.1109/72.159067.
6
Weighted graph cuts without eigenvectors a multilevel approach.无需特征向量的加权图割:一种多级方法。
IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1944-57. doi: 10.1109/TPAMI.2007.1115.
7
Distance-based clustering of CGH data.基于距离的比较基因组杂交数据聚类
Bioinformatics. 2006 Aug 15;22(16):1971-8. doi: 10.1093/bioinformatics/btl185. Epub 2006 May 16.
8
Segmentation given partial grouping constraints.
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):173-83. doi: 10.1109/tpami.2004.1262179.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验