Wang Jiazheng, Wright Alan J, Hu De-En, Hesketh Richard, Brindle Kevin M
Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom.
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
Magn Reson Med. 2017 Feb;77(2):740-752. doi: 10.1002/mrm.26168. Epub 2016 Feb 24.
Metabolic imaging with hyperpolarized C-labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single-shot three-dimensional (3D) imaging sequence and demonstrate its capability to generate C MR images in tumor-bearing mice injected with hyperpolarized [1- C]pyruvate.
The pulse sequence acquires a stack-of-spirals at two spin echoes after a single excitation pulse and encodes the kz-dimension in an interleaved manner to enhance robustness to B inhomogeneity. Spectral-spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized C-labeled metabolites.
A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm × 2 s was achieved in tumor images of hyperpolarized [1- C]pyruvate and [1- C]lactate acquired in vivo. Higher resolution in the z-direction, with a different k-space trajectory, was demonstrated in measurements on a thermally polarized [1- C]lactate phantom.
The pulse sequence is capable of imaging hyperpolarized C-labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740-752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
利用超极化碳标记的细胞底物进行代谢成像,是一种在体内对组织代谢进行成像的有前景的技术。然而,超极化的短暂性质及其在激发后的消耗,限制了成像时间和可使用的激发脉冲数量。我们在此描述一种单次三维(3D)成像序列,并展示其在注射了超极化[1-碳]丙酮酸的荷瘤小鼠中生成碳磁共振图像的能力。
该脉冲序列在单个激发脉冲后,在两个自旋回波处采集螺旋堆叠数据,并以交错方式对kz维度进行编码,以增强对磁场不均匀性的鲁棒性。光谱空间脉冲用于从选定的超极化碳标记代谢物中获取动态3D图像。
在体内获取的超极化[1-碳]丙酮酸和[1-碳]乳酸的肿瘤图像中,实现了1.25×1.25×2.5毫米×2秒的标称空间/时间分辨率。在热极化[1-碳]乳酸模型的测量中,展示了采用不同k空间轨迹在z方向上的更高分辨率。
该脉冲序列能够以相对较高的空间和时间分辨率对超极化碳标记的底物进行成像,并且对适度的系统缺陷具有鲁棒性。《磁共振医学》77:740 - 752, 2017。© 2016作者。《磁共振医学》由威利期刊公司代表国际磁共振医学学会出版。这是一篇根据知识共享署名许可协议条款的开放获取文章,允许在任何媒介中使用、分发和复制,前提是正确引用原始作品。