Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom.
School of Chemistry, University of Southampton, Southampton, United Kingdom.
Magn Reson Med. 2018 Feb;79(2):741-747. doi: 10.1002/mrm.26725. Epub 2017 May 5.
Dynamic magnetic resonance spectroscopic imaging of hyperpolarized C-labeled cell substrates has enabled the investigation of tissue metabolism in vivo. Currently observation of these hyperpolarized substrates is limited mainly to C detection. We describe here an imaging pulse sequence that enables proton observation by using polarization transfer from the hyperpolarized C nucleus to spin-coupled protons.
The pulse sequence transfers C hyperpolarization to H using a modified reverse insensitive nuclei enhanced by polarization transfer (INEPT) sequence that acquires a fully refocused echo. The resulting hyperpolarized H signal is acquired using a 2D echo-planar trajectory. The efficiency of polarization transfer was investigated using simulations with and without T and T relaxation of both the H and C nuclei.
Simulations showed that H detection of the hyperpolarized C nucleus in lactate should increase significantly the signal-to-noise ratio when compared with direct C detection at 3T. However the advantage of H detection is expected to disappear at higher fields. Dynamic H images of hyperpolarized [1- C]lactate, with a spatial resolution of 1.25 × 1.25 mm , were acquired from a phantom injected with hyperpolarized [1- C]lactate and from tumors in vivo following injection of hyperpolarized [1- C]pyruvate.
The sequence allows H imaging of hyperpolarized C-labeled substrates in vivo. Magn Reson Med 79:741-747, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
动态磁共振波谱成像是对超极化 ¹³C 标记细胞底物进行研究的一种方法,它可以使人们在体内观察组织代谢。目前,这些超极化底物的观察主要局限于 ¹³C 检测。本文介绍了一种成像脉冲序列,它可以通过将超极化 ¹³C 核的极化转移到自旋偶合质子上来实现质子检测。
该脉冲序列通过使用反转敏感核增强极化转移(INEPT)序列将 ¹³C 超极化转移到 ¹H 来实现,该序列采集完全重聚焦回波。使用二维回波平面轨迹采集由此产生的超极化 ¹H 信号。通过对 ¹H 和 ¹³C 核的 T 和 T2 弛豫进行模拟,研究了极化转移的效率。
模拟结果表明,与在 3T 时直接检测 ¹³C 相比,超极化 ¹³C 核的 ¹H 检测应该会显著提高信号噪声比。然而,在更高的场强下,¹H 检测的优势预计将会消失。通过对注射超极化[1-¹³C]乳酸盐的体模和注射超极化[1-¹³C]丙酮酸后的体内肿瘤进行动态 ¹H 成像,获得了空间分辨率为 1.25×1.25mm 的超极化[1-¹³C]乳酸盐的 ¹H 图像。
该序列允许在体内对超极化 ¹³C 标记的底物进行 ¹H 成像。磁共振医学 79:741-747, 2018。© 2017 作者。磁共振医学由 Wiley 期刊出版公司代表国际磁共振学会出版。这是在知识共享署名许可条款下的许可,允许在任何媒介中使用、分发和复制原作,只要原作者被正确引用。