Suppr超能文献

用于 ECG 和 EMG 无线生物传感器的压缩感知系统考虑因素。

Compressed sensing system considerations for ECG and EMG wireless biosensors.

机构信息

Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

IEEE Trans Biomed Circuits Syst. 2012 Apr;6(2):156-66. doi: 10.1109/TBCAS.2012.2193668.

Abstract

Compressed sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist processing of sparse signals such as electrocardiogram (ECG) and electromyogram (EMG) biosignals. Consequently, it can be applied to biosignal acquisition systems to reduce the data rate to realize ultra-low-power performance. CS is compared to conventional and adaptive sampling techniques and several system-level design considerations are presented for CS acquisition systems including sparsity and compression limits, thresholding techniques, encoder bit-precision requirements, and signal recovery algorithms. Simulation studies show that compression factors greater than 16X are achievable for ECG and EMG signals with signal-to-quantization noise ratios greater than 60 dB.

摘要

压缩感知(CS)是一种新兴的信号处理范例,可实现稀疏信号(如心电图(ECG)和肌电图(EMG)生物信号)的亚奈奎斯特处理。因此,它可以应用于生物信号采集系统,以降低数据速率,实现超低功耗性能。CS 与传统和自适应采样技术进行了比较,并针对 CS 采集系统提出了几个系统级设计注意事项,包括稀疏度和压缩限制、阈值技术、编码器位精度要求以及信号恢复算法。仿真研究表明,对于信噪比大于 60dB 的 ECG 和 EMG 信号,可实现大于 16X 的压缩因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验