Jacobs Th, Simsek Y, Koval Y, Müller P, Krasnov V M
Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden.
Department of Physics, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
Phys Rev Lett. 2016 Feb 12;116(6):067001. doi: 10.1103/PhysRevLett.116.067001. Epub 2016 Feb 9.
Our recently discovered electrical doping technique allows a broad-range variation of carrier concentration without changing the chemical composition. We show that it is possible to induce superconductivity in a nondoped insulating sample and to tune it reversibly all the way to an overdoped metallic state. This way, we can investigate the whole doping diagram of one and the same sample. Our study reveals two distinct critical points. The one at the overdoped side is associated with the onset of the pseudogap and with the metal-to-insulator transition in the c-axis transport. The other at optimal doping is associated with the appearance of a "dressed" electron energy. Our study confirms the existence of multiple phase transitions under the superconducting dome in cuprates.
我们最近发现的电掺杂技术能够在不改变化学成分的情况下实现载流子浓度的大范围变化。我们证明,在未掺杂的绝缘样品中诱导超导性并将其可逆地调节至过掺杂金属态是可行的。通过这种方式,我们可以研究同一个样品的整个掺杂相图。我们的研究揭示了两个不同的临界点。过掺杂一侧的临界点与赝能隙的出现以及c轴输运中的金属-绝缘体转变有关。最佳掺杂处的另一个临界点与“重整化”电子能量的出现有关。我们的研究证实了铜酸盐超导穹顶下存在多个相变。