McFarquhar Martyn, McKie Shane, Emsley Richard, Suckling John, Elliott Rebecca, Williams Stephen
Neuroscience & Psychiatry Unit, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Neuroscience & Psychiatry Unit, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Neuroimage. 2016 May 15;132:373-389. doi: 10.1016/j.neuroimage.2016.02.053. Epub 2016 Feb 24.
Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest.
重复测量和多模态数据在神经影像学研究中很常见。尽管如此,传统的组水平分析方法忽略了这些重复测量,而倾向于使用感兴趣的对比的多个被试间模型。这种方法有许多缺点,因为某些感兴趣的设计和比较要么不可能实现,要么实施起来很复杂。不幸的是,即使试图在重复测量框架内分析组水平数据,流行软件包中实现的方法对大脑协方差结构也做出了潜在不切实际的假设。在本文中,我们描述了如何使用熟悉的一般线性模型(GLM)的多变量形式,以简单有效的方式解决这个问题,该模型在一个新的MATLAB工具箱中实现。本文讨论了这个多变量框架,特别关注通过置换进行推断的方法。将其与用于相关组水平神经影像学数据的现有方法和软件包进行了比较。我们还展示了,当从同一个体收集多种成像模态时,该方法如何轻松地适应组水平的相关性。本文还讨论了使用线性判别函数(LDA)对这些多模态模型进行后续分析,并将其应用于未来希望将多种扫描技术整合到感兴趣人群研究中的研究。