Institute of Materials Science, University of Connecticut, 97 North Eagleville Rd., Unit 3136, Storrs, Connecticut 06269, USA.
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, 87545, New Mexico USA.
Sci Data. 2016 Mar 1;3:160012. doi: 10.1038/sdata.2016.12.
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.
新兴的计算和数据驱动方法对于合理设计具有目标性能的材料特别有用。通常,这些方法依赖于通过从足够大量的相关材料的数据集学习来识别结构-性能关系。然后可以使用所学到的信息来预测不在数据集中的材料的性能,从而加速材料设计。在此,我们开发了一个包含 1073 种聚合物和相关材料的数据集,并可在 http://khazana.uconn.edu/ 上获取。该数据集使用从头算方法进行统一制备,结构是从其他来源获得的,或者是使用结构搜索方法获得的。由于这项工作的直接目标是协助高介电常数聚合物的设计,因此它最初设计为包括优化结构、原子化能、带隙和介电常数。随着新材料的积累和为提供的优化结构计算的其他属性的增加,它将逐步扩展。