Choudhary Kamal, Garrity Kevin F, Sharma Vinit, Biacchi Adam J, Walker Angela R Hight, Tavazza Francesca
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
National Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
NPJ Comput Mater. 2020;6(1). doi: 10.1038/s41524-020-0337-2.
Many technological applications depend on the response of materials to electric fields, but available databases of such responses are limited. Here, we explore the infrared, piezoelectric and dielectric properties of inorganic materials by combining high-throughput density functional perturbation theory and machine learning approaches. We compute Γ-point phonons, infrared intensities, Born-effective charges, piezoelectric, and dielectric tensors for 5015 non-metallic materials in the JARVIS-DFT database. We find 3230 and 1943 materials with at least one far and mid-infrared mode, respectively. We identify 577 high-piezoelectric materials, using a threshold of 0.5 C/m. Using a threshold of 20, we find 593 potential high-dielectric materials. Importantly, we analyze the chemistry, symmetry, dimensionality, and geometry of the materials to find features that help explain variations in our datasets. Finally, we develop high-accuracy regression models for the highest infrared frequency and maximum Born-effective charges, and classification models for maximum piezoelectric and average dielectric tensors to accelerate discovery.
许多技术应用依赖于材料对电场的响应,但此类响应的现有数据库有限。在此,我们通过结合高通量密度泛函微扰理论和机器学习方法,探索无机材料的红外、压电和介电特性。我们计算了JARVIS-DFT数据库中5015种非金属材料的Γ点声子、红外强度、玻恩有效电荷、压电张量和介电张量。我们分别发现了3230种和1943种至少具有一种远红外和中红外模式的材料。我们使用0.5 C/m的阈值识别出577种高压电材料。使用20的阈值,我们发现了593种潜在的高介电材料。重要的是,我们分析了材料的化学、对称性、维度和几何结构,以找到有助于解释我们数据集中变化的特征。最后,我们开发了针对最高红外频率和最大玻恩有效电荷的高精度回归模型,以及针对最大压电张量和平均介电张量的分类模型,以加速发现过程。