Meyer K M, Ridgwell A, Payne J L
Department of Earth and Environmental Sciences, Willamette University, Salem, OR, USA.
Department of Earth Sciences, University of California, Riverside, CA, USA.
Geobiology. 2016 May;14(3):207-19. doi: 10.1111/gbi.12176. Epub 2016 Feb 29.
The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has exerted a first-order control on Earth system evolution across Phanerozoic time.
海洋表层有机物质的净输出及其在深层的呼吸作用,在营养物质和氧气可利用性方面形成了垂直梯度,这在构建海洋生态系统中起着主要作用。据推测,这种“生物泵”特性的变化是海洋生态系统结构发生重要转变的原因,包括寒武纪大爆发。然而,生物泵行为变化对海洋生物地球化学的影响仍未得到充分量化,这阻碍了对地质时期生物泵变化如何塑造海洋化学、生物地球化学循环和生态系统结构的长期转变进行任何详细探究。在此,我们使用一个中等复杂度的三维地球系统模型来定量探究生物泵对海洋化学的影响。我们发现,当下沉有机物质的呼吸效率较高时,由于下沉速度较慢或呼吸速率较高,缺氧现象往往更普遍且发生在较浅水域。因此,显生宙期间大陆架环境中底层水缺氧现象减少的趋势,可能是由营养物质循环空间动态变化而非海洋磷酸盐储量的任何变化所导致的。模型结果还表明,显生宙期间海洋缺氧现象普遍程度的下降,部分是较大型浮游植物进化的结果,其中许多浮游植物会产生矿化外壳。我们推测,显生宙期间动物丰度和代谢需求增加的趋势,更多是由陆架环境中氧气浓度升高驱动的,而非食物(营养物质)可利用性增加。事实上,在我们的封闭系统模型中,低于现代水平的海洋磷酸盐储量无法解释古生代底层水缺氧现象的普遍存在。总体而言,这些模型模拟表明,海洋中光合作用和呼吸作用空间分布的变化,对显生宙时期地球系统的演化起到了一级控制作用。