Suppr超能文献

出院准备与再入院预测。

Preparedness for hospital discharge and prediction of readmission.

作者信息

Mixon Amanda S, Goggins Kathryn, Bell Susan P, Vasilevskis Eduard E, Nwosu Samuel, Schildcrout Jonathan S, Kripalani Sunil

机构信息

Department of Veterans Affairs, Tennessee Valley Healthcare System Geriatric Research Education and Clinical Center, Nashville, Tennessee.

Section of Hospital Medicine, Division of General Internal Medicine and Public Health, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.

出版信息

J Hosp Med. 2016 Sep;11(9):603-9. doi: 10.1002/jhm.2572. Epub 2016 Feb 29.

Abstract

BACKGROUND, OBJECTIVE: Patients' self-reported preparedness for discharge has been shown to predict readmission. It is unclear what differences exist in the predictive abilities of 2 available discharge preparedness measures. To address this gap, we conducted a comparison of these measures.

DESIGN, SETTING, PATIENTS: Adults hospitalized for cardiovascular diagnoses were enrolled in a prospective cohort.

MEASUREMENTS

Two patient-reported preparedness measures assessed during postdischarge calls: the 11-item Brief Prescriptions, Ready to re-enter community, Education, Placement, Assurance of safety, Realistic expectations, Empowerment, Directed to appropriate services (B-PREPARED) and the 3-item Care Transitions Measure (CTM-3). Cox proportional hazard models analyzed the relationship between preparedness and time to first readmission or death at 30 and 90 days, adjusted for readmission risk using the administrative database-derived Length of stay, Acuity, Comorbidity, and Emergency department use (LACE) index and other covariates.

RESULTS

Median preparedness scores were: B-PREPARED 21 (interquartile range [IQR] 18-22) and CTM-3 77.8 (IQR 66.7-100). In individual Cox models, a 4-point increase in B-PREPARED score was associated with a 16% decrease in time to readmission or death at 30 and 90 days. A 10-point increase in CTM-3 score was not associated with readmission or death at 30 days, but was associated with a 6% decrease in readmission or death at 90 days. In models with both preparedness scores, B-PREPARED retained an association with readmission or death at both 30 and 90 days. However, neither preparedness score was as strong a predictor as the LACE index when all were included in the model predicting 30- and 90-day readmission or death.

CONCLUSION

The B-PREPARED score was more strongly associated with readmission or death than the more widely adopted CTM-3, but neither predicted readmission as well as the LACE index. Journal of Hospital Medicine 2016;11:603-609. © 2016 Society of Hospital Medicine.

摘要

背景、目的:患者自我报告的出院准备情况已被证明可预测再入院情况。目前尚不清楚两种现有的出院准备情况测量方法在预测能力上存在哪些差异。为填补这一空白,我们对这些测量方法进行了比较。

设计、地点、患者:因心血管疾病诊断住院的成年人被纳入一项前瞻性队列研究。

测量

在出院后随访电话中评估两种患者报告的准备情况测量方法:11项简短处方、准备好重新融入社区、教育、安置、安全保障、现实期望、赋权、指向适当服务(B - 准备就绪)和3项护理过渡测量方法(CTM - 3)。Cox比例风险模型分析了准备情况与30天和90天时首次再入院或死亡时间之间的关系,并使用行政数据库得出的住院时间、 acuity、合并症和急诊科使用情况(LACE)指数以及其他协变量对再入院风险进行了调整。

结果

准备情况得分中位数分别为:B - 准备就绪21分(四分位间距[IQR] 18 - 22)和CTM - 3 77.8分(IQR 66.7 - 100)。在个体Cox模型中,B - 准备就绪得分增加4分与30天和90天时再入院或死亡时间减少16%相关。CTM - 3得分增加10分与30天时的再入院或死亡无关,但与90天时再入院或死亡减少6%相关。在同时包含两种准备情况得分的模型中,B - 准备就绪在30天和90天时均与再入院或死亡相关。然而,当将所有因素纳入预测30天和90天再入院或死亡的模型时,两种准备情况得分都不如LACE指数是强有力的预测指标。

结论

与应用更广泛的CTM - 3相比,B - 准备就绪得分与再入院或死亡的关联更强,但两者对再入院的预测能力都不如LACE指数。《医院医学杂志》2016年;11:603 - 609。© 2016医院医学协会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a70/5003753/d851bea4fc9e/nihms758269f1.jpg

相似文献

1
Preparedness for hospital discharge and prediction of readmission.出院准备与再入院预测。
J Hosp Med. 2016 Sep;11(9):603-9. doi: 10.1002/jhm.2572. Epub 2016 Feb 29.
6
LACE+ Index as Predictor of 30-Day Readmission in Brain Tumor Population.LACE+指数作为脑肿瘤患者30天再入院的预测指标
World Neurosurg. 2019 Jul;127:e443-e448. doi: 10.1016/j.wneu.2019.03.169. Epub 2019 Mar 27.

引用本文的文献

5
Predictive Value of LACE Scores for Pediatric Readmissions.LACE 评分对儿科再入院的预测价值。
Perm J. 2024 Jun 14;28(2):9-15. doi: 10.7812/TPP/23.114. Epub 2024 Feb 23.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验