Suppr超能文献

真细菌光驱动离子泵的不对称功能转换

Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps.

作者信息

Inoue Keiichi, Nomura Yurika, Kandori Hideki

机构信息

From the Department of Frontier Materials and OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

From the Department of Frontier Materials and.

出版信息

J Biol Chem. 2016 May 6;291(19):9883-93. doi: 10.1074/jbc.M116.716498. Epub 2016 Feb 29.

Abstract

In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na(+) and inward Cl(-) pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR). The H(+), Na(+), and Cl(-) pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na(+) → H(+) functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na(+) → Cl(-) and Cl(-) → H(+) functional conversions, whereas remaining conversions (H(+) → Na(+), H(+) → Cl(-), Cl(-) → Na(+)) were unsuccessful when mutagenesis of 4-6 residues was used. Phylogenetic analysis suggests that a H(+) pump is the common ancestor of all of these rhodopsins, from which Cl(-) pumps emerged followed by Na(+) pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro.

摘要

除了众所周知的光驱动外向质子泵外,最近在真细菌中发现了新型离子泵视紫红质,其作为外向Na(+)泵和内向Cl(-)泵发挥作用。它们将光能转化为跨膜电化学势差,类似于典型的古菌H(+)泵细菌视紫红质(BR)和Cl(-)泵嗜盐视紫红质(HR)。H(+)、Na(+)和Cl(-)泵在螺旋C中具有保守的各自的DTE、NDQ和NTQ基序,这可能是它们的功能决定因素。为了验证这一假设,我们试图通过诱变在每一类选定的泵之间进行功能互变。引入质子泵基序导致成功的Na(+)→H(+)功能转换。引入各自的特征基序并进行一些额外的突变导致成功的Na(+)→Cl(-)和Cl(-)→H(+)功能转换,而当使用4-6个残基的诱变时,其余的转换(H(+)→Na(+)、H(+)→Cl(-)、Cl(-)→Na(+))未成功。系统发育分析表明,H(+)泵是所有这些视紫红质的共同祖先,Cl(-)泵从其中出现,随后是Na(+)泵。我们提出,只有当诱变逆转进化氨基酸序列变化时,这些离子泵才能成功进行功能转换。观察到的功能转换对进化方向的依赖性强烈表明,即使在自然进化过程中获得新功能后,祖先功能的基本结构机制仍然保留,这可以由少数突变引发。相比之下,新功能的获得需要多个突变的积累,这在体外有限的诱变中可能不容易重现。

相似文献

1
Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps.真细菌光驱动离子泵的不对称功能转换
J Biol Chem. 2016 May 6;291(19):9883-93. doi: 10.1074/jbc.M116.716498. Epub 2016 Feb 29.
9
Halorhodopsin: light-driven ion pumping made simple?嗜盐菌视紫红质:光驱动离子泵浦能否简化?
Curr Opin Struct Biol. 2002 Aug;12(4):516-22. doi: 10.1016/s0959-440x(02)00356-1.

引用本文的文献

3
Biophysical characterization of microbial rhodopsins with DSE motif.具有DSE基序的微生物视紫红质的生物物理特性
Biophys Physicobiol. 2023 Mar 8;20(Supplemental):e201023. doi: 10.2142/biophysico.bppb-v20.s023. eCollection 2023 Mar 21.
7
Microbial Rhodopsins.微生物视紫红质
Methods Mol Biol. 2022;2501:1-52. doi: 10.1007/978-1-0716-2329-9_1.

本文引用的文献

4
Crystal structure of a light-driven sodium pump.光驱动钠泵的晶体结构。
Nat Struct Mol Biol. 2015 May;22(5):390-5. doi: 10.1038/nsmb.3002. Epub 2015 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验