Department of Chemistry and Chemical Biology and ‡Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States.
Nano Lett. 2016 Apr 13;16(4):2830-6. doi: 10.1021/acs.nanolett.6b00629. Epub 2016 Mar 7.
One-dimensional (1D) structures offer unique opportunities for materials synthesis since crystal phases and morphologies that are difficult or impossible to achieve in macroscopic crystals can be synthesized as 1D nanowires (NWs). Recently, we demonstrated one such phenomenon unique to growth on a 1D substrate, termed Plateau-Rayleigh (P-R) crystal growth, where periodic shells develop along a NW core to form diameter-modulated NW homostructures with tunable morphologies. Here we report a novel extension of the P-R crystal growth concept with the synthesis of heterostructures in which Ge (Si) is deposited on Si (Ge) 1D cores to generate complex NW morphologies in 1, 2, or 3D. Depositing Ge on 50 nm Si cores with a constant GeH4 pressure yields a single set of periodic shells, while sequential variation of GeH4 pressure can yield multimodulated 1D NWs with two distinct sets of shell periodicities. P-R crystal growth on 30 nm cores also produces 2D loop structures, where Ge (Si) shells lie primarily on the outside (inside) of a highly curved Si (Ge) core. Systematic investigation of shell morphology as a function of growth time indicates that Ge shells grow in length along positive curvature Si cores faster than along straight Si cores by an order of magnitude. Short Ge deposition times reveal that shells develop on opposite sides of 50 and 100 nm Si cores to form straight 1D morphologies but that shells develop on the same side of 20 nm cores to produce 2D loop and 3D spring structures. These results suggest that strain mediates the formation of 2 and 3D morphologies by altering the NW's surface chemistry and that surface diffusion of heteroatoms on flexible freestanding 1D substrates can facilitate this strain-mediated mechanism.
一维(1D)结构为材料合成提供了独特的机会,因为在宏观晶体中难以或不可能实现的晶体相和形态可以作为一维纳米线(NW)合成。最近,我们展示了一种在一维衬底上生长的独特现象,称为高原-瑞利(P-R)晶体生长,其中周期性壳层沿 NW 核生长,形成具有可调形态的直径调制 NW 同构结构。在这里,我们报告了 P-R 晶体生长概念的一个新扩展,通过在 Si(Ge)1D 核上沉积 Ge(Si)来合成异质结构,从而在 1、2 或 3D 中生成复杂的 NW 形态。在恒定的 GeH4 压力下将 Ge 沉积到 50nm 的 Si 核上,会产生一组周期性壳层,而依次改变 GeH4 压力则可以产生具有两组不同壳层周期性的多调制 1D NW。在 30nm 核上进行 P-R 晶体生长也会产生 2D 环结构,其中 Ge(Si)壳层主要位于高度弯曲的 Si(Ge)核的外部(内部)。系统地研究壳层形态作为生长时间的函数表明,Ge 壳层沿着曲率为正的 Si 核以比沿着直 Si 核快一个数量级的速度生长。较短的 Ge 沉积时间表明,壳层在 50nm 和 100nm Si 核的相对侧形成直的 1D 形态,但在 20nm 核的同一侧形成 2D 环和 3D 弹簧结构。这些结果表明,应变通过改变 NW 的表面化学来调节 2 和 3D 形态的形成,并且在柔性独立 1D 衬底上的杂原子的表面扩散可以促进这种应变介导的机制。