Suppr超能文献

利用基因表达谱诊断冠心病;稳定型冠状动脉疾病、伴有和不伴有心肌坏死的心脏缺血

Diagnosis of Coronary Heart Diseases Using Gene Expression Profiling; Stable Coronary Artery Disease, Cardiac Ischemia with and without Myocardial Necrosis.

作者信息

Kazmi Nabila, Gaunt Tom R

机构信息

MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, BS8 2BN, Bristol, United Kingdom.

出版信息

PLoS One. 2016 Mar 1;11(3):e0149475. doi: 10.1371/journal.pone.0149475. eCollection 2016.

Abstract

Cardiovascular disease (including coronary artery disease and myocardial infarction) is one of the leading causes of death in Europe, and is influenced by both environmental and genetic factors. With the recent advances in genomic tools and technologies there is potential to predict and diagnose heart disease using molecular data from analysis of blood cells. We analyzed gene expression data from blood samples taken from normal people (n = 21), non-significant coronary artery disease (n = 93), patients with unstable angina (n = 16), stable coronary artery disease (n = 14) and myocardial infarction (MI; n = 207). We used a feature selection approach to identify a set of gene expression variables which successfully differentiate different cardiovascular diseases. The initial features were discovered by fitting a linear model for each probe set across all arrays of normal individuals and patients with myocardial infarction. Three different feature optimisation algorithms were devised which identified two discriminating sets of genes, one using MI and normal controls (total genes = 6) and another one using MI and unstable angina patients (total genes = 7). In all our classification approaches we used a non-parametric k-nearest neighbour (KNN) classification method (k = 3). The results proved the diagnostic robustness of the final feature sets in discriminating patients with myocardial infarction from healthy controls. Interestingly it also showed efficacy in discriminating myocardial infarction patients from patients with clinical symptoms of cardiac ischemia but no myocardial necrosis or stable coronary artery disease, despite the influence of batch effects and different microarray gene chips and platforms.

摘要

心血管疾病(包括冠状动脉疾病和心肌梗死)是欧洲主要的死亡原因之一,受环境和遗传因素的双重影响。随着基因组工具和技术的最新进展,利用血细胞分析的分子数据来预测和诊断心脏病成为可能。我们分析了来自正常人(n = 21)、非显著性冠状动脉疾病患者(n = 93)、不稳定型心绞痛患者(n = 16)、稳定型冠状动脉疾病患者(n = 14)和心肌梗死患者(MI;n = 207)的血液样本的基因表达数据。我们采用特征选择方法来识别一组能够成功区分不同心血管疾病的基因表达变量。通过对正常个体和心肌梗死患者所有阵列上的每个探针集拟合线性模型来发现初始特征。设计了三种不同的特征优化算法,确定了两组具有鉴别能力的基因,一组使用心肌梗死患者和正常对照(总共6个基因),另一组使用心肌梗死患者和不稳定型心绞痛患者(总共7个基因)。在我们所有的分类方法中,都使用了非参数k近邻(KNN)分类方法(k = 3)。结果证明了最终特征集在区分心肌梗死患者和健康对照方面的诊断稳健性。有趣的是,尽管存在批次效应以及不同的微阵列基因芯片和平台的影响,但它在区分心肌梗死患者与有心脏缺血临床症状但无心肌坏死或稳定型冠状动脉疾病的患者方面也显示出有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3824/4773227/794bf8966e58/pone.0149475.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验