Suppr超能文献

精细多尺度希尔伯特-黄谱熵及其在中枢和外周心血管数据中的应用

Refined Multiscale Hilbert-Huang Spectral Entropy and Its Application to Central and Peripheral Cardiovascular Data.

作者信息

Humeau-Heurtier Anne, Wu Chiu-Wen, Wu Shuen-De, Mahe Guillaume, Abraham Pierre

出版信息

IEEE Trans Biomed Eng. 2016 Nov;63(11):2405-2415. doi: 10.1109/TBME.2016.2533665. Epub 2016 Feb 25.

Abstract

OBJECTIVE

Spectral entropy has been applied in variety of fields. Multiscale spectral entropy (MSSE) has also recently been proposed to take into account structures on several scales. However, MSSE has some drawbacks, such as the coarse-graining procedure performed in the time domain. In this study, we propose a new framework to compute MSSE. This framework is also adapted for nonstationary data.

METHODS

Our work relies on processing steps performed directly in the frequency domain. For nonstationary signals, the evolution of entropy values with scales is observed along time. Our algorithm is herein evaluated both on synthetic time series (stationary and non-stationary signals) and on data from the cardiovascular system (CVS). For this purpose, heart rate variability (from the central CVS), laser Doppler flowmetry, and laser speckle contrast data (both from the peripheral CVS) are analyzed.

RESULTS

The results show that our framework has better performances than the existing algorithms to compute MSSE, both in terms of reliability and computational cost. Moreover, it is able to reveal repetitive patterns on central and peripheral CVS signals. These patterns may be linked to physiological activities. Furthermore, from the processing of microvascular data, it is able to distinguish young from elderly subjects.

CONCLUSION

Our framework outperforms other algorithms to compute MSSE. It also has the advantage of revealing physiological information.

SIGNIFICANCE

By showing better performances than existing algorithms to compute MSSE, our work is a new and promising way to compute an entropy measure from the spectral domain. It also has the advantage of stressing physiologically linked phenomena.

摘要

目的

谱熵已应用于多个领域。最近还提出了多尺度谱熵(MSSE),以考虑多个尺度上的结构。然而,MSSE存在一些缺点,例如在时域中执行的粗粒化过程。在本研究中,我们提出了一种计算MSSE的新框架。该框架也适用于非平稳数据。

方法

我们的工作依赖于直接在频域中执行的处理步骤。对于非平稳信号,沿时间观察熵值随尺度的演变。我们的算法在此针对合成时间序列(平稳和非平稳信号)以及来自心血管系统(CVS)的数据进行了评估。为此,分析了心率变异性(来自中央CVS)、激光多普勒血流仪以及激光散斑对比数据(均来自外周CVS)。

结果

结果表明,我们的框架在计算MSSE方面比现有算法具有更好的性能,在可靠性和计算成本方面均如此。此外,它能够揭示中央和外周CVS信号上的重复模式。这些模式可能与生理活动有关。此外,通过对微血管数据的处理,它能够区分年轻人和老年人。

结论

我们的框架在计算MSSE方面优于其他算法。它还具有揭示生理信息的优势。

意义

通过展示比现有算法在计算MSSE方面更好的性能,我们的工作是一种从频谱域计算熵测度的新的且有前景的方法。它还具有强调生理相关现象的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验