Suppr超能文献

基于计算机辅助诊断的柯氏音信号与慢性心力衰竭(CHF)的相关性研究

A Study on the Association between Korotkoff Sound Signaling and Chronic Heart Failure (CHF) Based on Computer-Assisted Diagnoses.

机构信息

College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China.

The Fourth Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China.

出版信息

J Healthc Eng. 2022 Sep 1;2022:3226655. doi: 10.1155/2022/3226655. eCollection 2022.

Abstract

BACKGROUND

Korotkoff sound (KS) is an important indicator of hypertension when monitoring blood pressure. However, its utility in noninvasive diagnosis of Chronic heart failure (CHF) has rarely been studied.

PURPOSE

In this study, we proposed a method for signal denoising, segmentation, and feature extraction for KS, and a Bayesian optimization-based support vector machine algorithm for KS classification.

METHODS

The acquired KS signal was resampled and denoised to extract 19 energy features, 12 statistical features, 2 entropy features, and 13 Mel Frequency Cepstrum Coefficient (MFCCs) features. A controlled trial based on the VALSAVA maneuver was carried out to investigate the relationship between cardiac function and KS. To classify these feature sets, the K-Nearest Neighbors (KNN), decision tree (DT), Naive Bayes (NB), ensemble (EM) classifiers, and the proposed BO-SVM were employed and evaluated using the accuracy (Acc), sensitivity (Se), specificity (Sp), Precision (Ps), and F1 score (F1).

RESULTS

The ALSAVA maneuver indicated that the KS signal could play an important role in the diagnosis of CHF. Through comparative experiments, it was shown that the best performance of the classifier was obtained by BO-SVM, with Acc (85.0%), Se (85.3%), and Sp (84.6%).

CONCLUSIONS

In this study, a method for noise reduction, segmentation, and classification of KS was established. In the measured data set, our method performed well in terms of classification accuracy, sensitivity, and specificity. In light of this, we believed that the methods described in this paper can be applied to the early, noninvasive detection of heart disease as well as a supplementary monitoring technique for the prognosis of patients with CHF.

摘要

背景

柯氏音(KS)是监测血压时高血压的一个重要指标。然而,它在无创诊断慢性心力衰竭(CHF)中的应用很少被研究。

目的

本研究提出了一种柯氏音信号去噪、分割和特征提取的方法,以及一种基于贝叶斯优化的支持向量机算法用于柯氏音分类。

方法

对采集到的柯氏音信号进行重采样和去噪,提取 19 个能量特征、12 个统计特征、2 个熵特征和 13 个梅尔频率倒谱系数(MFCC)特征。基于 VALSAVA 动作进行了一项对照试验,以研究心功能与 KS 之间的关系。为了对这些特征集进行分类,采用 K-最近邻(KNN)、决策树(DT)、朴素贝叶斯(NB)、集成(EM)分类器和所提出的 BO-SVM,并使用准确性(Acc)、敏感性(Se)、特异性(Sp)、精度(Ps)和 F1 分数(F1)进行评估。

结果

VALSAVA 动作表明,KS 信号在 CHF 的诊断中可能发挥重要作用。通过对比实验,结果表明,分类器的最佳性能是通过 BO-SVM 获得的,Acc(85.0%)、Se(85.3%)和 Sp(84.6%)。

结论

本研究建立了一种柯氏音降噪、分割和分类的方法。在测量数据集上,我们的方法在分类准确性、敏感性和特异性方面表现良好。基于此,我们认为本文所述的方法可应用于心脏病的早期、无创检测,以及 CHF 患者预后的辅助监测技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23cd/9458390/1dc1c749b2b9/JHE2022-3226655.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验