Suppr超能文献

基于深度学习的盲图像模糊估计。

Blind Image Blur Estimation via Deep Learning.

出版信息

IEEE Trans Image Process. 2016 Apr;25(4):1910-21. doi: 10.1109/TIP.2016.2535273. Epub 2016 Feb 26.

Abstract

Image blur kernel estimation is critical to blind image deblurring. Most existing approaches exploit handcrafted blur features that are optimized for a certain uniform blur across the image, which is unrealistic in a real blind deconvolution setting, where the blur type is often unknown. To deal with this issue, we aim at identifying the blur type for each input image patch, and then estimating the kernel parameter in this paper. A learning-based method using a pre-trained deep neural network (DNN) and a general regression neural network (GRNN) is proposed to first classify the blur type and then estimate its parameters, taking advantages of both the classification ability of DNN and the regression ability of GRNN. To the best of our knowledge, this is the first time that pre-trained DNN and GRNN have been applied to the problem of blur analysis. First, our method identifies the blur type from a mixed input of image patches corrupted by various blurs with different parameters. To this aim, a supervised DNN is trained to project the input samples into a discriminative feature space, in which the blur type can be easily classified. Then, for each blur type, the proposed GRNN estimates the blur parameters with very high accuracy. Experiments demonstrate the effectiveness of the proposed method in several tasks with better or competitive results compared with the state of the art on two standard image data sets, i.e., the Berkeley segmentation data set and the Pascal VOC 2007 data set. In addition, blur region segmentation and deblurring on a number of real photographs show that our method outperforms the previous techniques even for non-uniformly blurred images.

摘要

图像模糊核估计是盲图像去模糊的关键。大多数现有的方法都利用了手工制作的模糊特征,这些特征是针对图像的均匀模糊进行优化的,但在实际的盲反卷积环境中,这是不现实的,因为模糊类型通常是未知的。为了解决这个问题,我们的目标是为每个输入图像块识别模糊类型,然后在本文中估计核参数。提出了一种使用预训练深度神经网络(DNN)和广义回归神经网络(GRNN)的基于学习的方法,首先对模糊类型进行分类,然后利用 DNN 的分类能力和 GRNN 的回归能力来估计其参数。据我们所知,这是首次将预训练的 DNN 和 GRNN 应用于模糊分析问题。首先,我们的方法从由不同参数的各种模糊污染的混合输入图像块中识别模糊类型。为此,训练了一个有监督的 DNN 将输入样本投影到一个可区分的特征空间中,在这个空间中可以很容易地对模糊类型进行分类。然后,对于每种模糊类型,所提出的 GRNN 可以非常准确地估计模糊参数。实验在两个标准图像数据集,即伯克利分割数据集和帕斯卡 VOC 2007 数据集上的几个任务中证明了所提出方法的有效性,与最先进的方法相比,取得了更好或有竞争力的结果。此外,在一些真实照片上的模糊区域分割和去模糊显示,即使对于非均匀模糊的图像,我们的方法也优于以前的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验