Liu Kai, Jin Feng, Zhu Tianyuan, Fang Jie, Zhang Xingchang, Peng Erhao, Liu Kuan, Lv Qiming, Dai Kunjie, Tao Yajun, Lu Jingdi, Huang Haoliang, Li Jiachen, Dong Shouzhe, Shen Shengchun, Yin Yuewei, Huang Houbing, Luo Zhenlin, Ma Chao, Liu Shi, Wang Lingfei, Wu Wenbin
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
Department of Physics, School of Science, Westlake University, Hangzhou, China.
Nat Commun. 2025 Aug 11;16(1):7385. doi: 10.1038/s41467-025-62610-3.
Hafnium oxide-based ferroelectric thin films are widely recognized as a CMOS-compatible and highly scalable material platform for next-generation non-volatile memory and logic devices. While out-of-plane ferroelectricity in hafnium oxide films has been intensively investigated and utilized in devices, purely in-plane ferroelectricity of hafnium oxides remains unexplored. In this work, we demonstrate a reversible structural modulation of the orthorhombic phase HfZrO films between (111)-oriented [HZO(111)] multi-domain and (100)-oriented [HZO(100)] single-domain configurations by altering perovskite oxide buffer layers. Unlike conventional out-of-plane polarized HZO(111) films, the HZO(100) films exhibit uniaxial in-plane ferroelectric polarization, sustained even at a thickness of 1.0 nm. Furthermore, the in-plane ferroelectric switching achieves an ultralow coercivity of ~0.5 MV/cm. The HZO(100) phase is stabilized by a staggered interfacial reconstruction, driven by the delicate interplays between symmetry mismatch and surface energy. These findings pave the way for innovative device designs and strategies for modulating the functionalities of hafnium oxide-based ferroelectrics.
基于氧化铪的铁电薄膜被广泛认为是用于下一代非易失性存储器和逻辑器件的与互补金属氧化物半导体(CMOS)兼容且具有高度可扩展性的材料平台。虽然氧化铪薄膜中的面外铁电性已得到深入研究并应用于器件中,但氧化铪的纯面内铁电性仍未被探索。在这项工作中,我们通过改变钙钛矿氧化物缓冲层,展示了正交相HfZrO薄膜在(111)取向的[HZO(111)]多畴和(100)取向的[HZO(100)]单畴配置之间的可逆结构调制。与传统的面外极化HZO(111)薄膜不同,HZO(100)薄膜表现出单轴面内铁电极化,即使在厚度为1.0纳米时也能保持。此外,面内铁电开关实现了约0.5 MV/cm的超低矫顽力。HZO(100)相通过交错界面重构得以稳定,这是由对称性失配和表面能之间的微妙相互作用驱动的。这些发现为创新的器件设计以及调制基于氧化铪的铁电体功能的策略铺平了道路。