Suppr超能文献

针对易感-感染-康复网络传播模型的局部免疫计划。

Local immunization program for susceptible-infected-recovered network epidemic model.

作者信息

Wu Qingchu, Lou Yijun

机构信息

College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China.

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

出版信息

Chaos. 2016 Feb;26(2):023108. doi: 10.1063/1.4941670.

Abstract

The immunization strategies through contact tracing on the susceptible-infected-recovered framework in social networks are modelled to evaluate the cost-effectiveness of information-based vaccination programs with particular focus on the scenario where individuals belonging to a specific set can get vaccinated due to the vaccine shortages and other economic or humanity constraints. By using the block heterogeneous mean-field approach, a series of discrete-time dynamical models is formulated and the condition for epidemic outbreaks can be established which is shown to be not only dependent on the network structure but also closely related to the immunization control parameters. Results show that increasing the immunization strength can effectively raise the epidemic threshold, which is different from the predictions obtained through the susceptible-infected-susceptible network framework, where epidemic threshold is independent of the vaccination strength. Furthermore, a significant decrease of vaccine use to control the infectious disease is observed for the local vaccination strategy, which shows the promising applications of the local immunization programs to disease control while calls for accurate local information during the process of disease outbreak.

摘要

在社交网络中基于易感-感染-康复框架通过接触者追踪的免疫策略进行了建模,以评估基于信息的疫苗接种计划的成本效益,特别关注由于疫苗短缺以及其他经济或人道限制,特定群体中的个体能够接种疫苗的情况。通过使用块异质平均场方法,建立了一系列离散时间动态模型,并确定了疫情爆发的条件,结果表明该条件不仅取决于网络结构,还与免疫控制参数密切相关。结果显示,提高免疫强度可以有效提高疫情阈值,这与通过易感-感染-易感网络框架得到的预测结果不同,在该框架中疫情阈值与疫苗接种强度无关。此外,对于局部疫苗接种策略,观察到控制传染病所需疫苗用量显著减少,这表明局部免疫计划在疾病控制方面具有广阔应用前景,同时在疾病爆发过程中需要准确的局部信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4488/7112476/fcddd061726a/CHAOEH-000026-023108_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验