Suppr超能文献

中间神经元根据其胚胎谱系对发育中的海马体自发网络活动有不同贡献。

Interneurons Differentially Contribute to Spontaneous Network Activity in the Developing Hippocampus Dependent on Their Embryonic Lineage.

作者信息

Wester Jason C, McBain Chris J

机构信息

Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892.

Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892

出版信息

J Neurosci. 2016 Mar 2;36(9):2646-62. doi: 10.1523/JNEUROSCI.4000-15.2016.

Abstract

UNLABELLED

Spontaneously generated network activity is a hallmark of developing neural circuits, and plays an important role in the formation of synaptic connections. In the rodent hippocampus, this activity is observed in vitro as giant depolarizing potentials (GDPs) during the first postnatal week. Interneurons importantly contribute to GDPs, due to the depolarizing actions of GABA early in development. While they are highly diverse, cortical interneurons can be segregated into two distinct groups based on their embryonic lineage from either the medial or caudal ganglionic eminences (MGE and CGE). There is evidence suggesting CGE-derived interneurons are important for GDP generation; however, their contribution relative to those from the MGE has never been directly tested. Here, we optogenetically inhibited either MGE- or CGE-derived interneurons in a region-specific manner in mouse neonatal hippocampus in vitro. In CA1, where interneurons are the primary source of recurrent excitation, we found that those from the MGE strongly and preferentially contributed to GDP generation. Furthermore, in dual whole-cell patch recordings in neonatal CA1, MGE interneurons formed synaptic connections to and from neighboring pyramidal cells at a much higher rate than those from the CGE. These MGE interneurons were commonly perisomatic targeting, in contrast to those from the CGE, which were dendrite targeting. Finally, inhibiting MGE interneurons in CA1 suppressed GDPs in CA3 and vice versa; conversely, they could also trigger GDPs in CA1 that propagated to CA3 and vice versa. Our data demonstrate a key role for MGE-derived interneurons in both generating and coordinating GDPs across the hippocampus.

SIGNIFICANCE STATEMENT

During nervous system development, immature circuits internally generate rhythmic patterns of electrical activity that promote the establishment of synaptic connections. Immature interneurons are excitatory rather than inhibitory and actively contribute to the generation of these spontaneous network events, referred to as giant depolarizing potentials (GDPs) in the hippocampus. Interneurons can be generally separated into two distinct groups based on their origin in the embryo from the medial or caudal ganglionic eminences (MGE and CGE). Here we show that MGE interneurons play a dominant role in generating GDPs compared with their CGE counterparts. They accomplish this due to their high synaptic connectivity within the local circuitry. Finally, they can control network activity across large regions of the developing hippocampus.

摘要

未标注

自发产生的网络活动是发育中神经回路的一个标志,并且在突触连接的形成中起重要作用。在啮齿动物海马体中,这种活动在出生后第一周的体外培养中表现为巨大去极化电位(GDPs)。由于发育早期GABA的去极化作用,中间神经元对GDPs有重要贡献。虽然皮质中间神经元高度多样化,但根据其胚胎起源于内侧或尾侧神经节隆起(MGE和CGE),可将其分为两个不同的组。有证据表明源自CGE的中间神经元对GDP的产生很重要;然而,它们相对于源自MGE的中间神经元的贡献从未被直接测试过。在这里,我们在体外以区域特异性方式用光遗传学方法抑制小鼠新生海马体中源自MGE或CGE的中间神经元。在CA1区,中间神经元是反复兴奋的主要来源,我们发现源自MGE的中间神经元对GDP的产生有强烈且优先的贡献。此外,在新生CA1区的双细胞全细胞膜片钳记录中,MGE中间神经元与相邻锥体细胞之间形成突触连接的速率比源自CGE的中间神经元高得多。与源自CGE的中间神经元(靶向树突)不同,这些MGE中间神经元通常靶向胞体周围。最后,抑制CA1区的MGE中间神经元会抑制CA3区的GDPs,反之亦然;相反,它们也可以在CA1区触发传播到CA3区的GDPs,反之亦然。我们的数据证明了源自MGE的中间神经元在整个海马体中产生和协调GDPs方面的关键作用。

意义声明

在神经系统发育过程中,未成熟的神经回路在内部产生有节律的电活动模式,促进突触连接的建立。未成熟的中间神经元是兴奋性的而非抑制性的,并积极参与这些自发网络事件的产生,在海马体中这些事件被称为巨大去极化电位(GDPs)。根据中间神经元在胚胎中的起源于内侧或尾侧神经节隆起(MGE和CGE),它们通常可分为两个不同的组。在这里我们表明,与源自CGE的中间神经元相比,源自MGE的中间神经元在产生GDPs方面起主导作用。它们之所以能做到这一点,是因为它们在局部回路中具有高度的突触连接性。最后,它们可以控制发育中的海马体大片区域的网络活动。

相似文献

2
Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices.
J Physiol. 1997 Feb 1;498 ( Pt 3)(Pt 3):763-72. doi: 10.1113/jphysiol.1997.sp021900.
3
Spontaneous recurrent network activity in organotypic rat hippocampal slices.
Eur J Neurosci. 2005 Jul;22(1):107-18. doi: 10.1111/j.1460-9568.2005.04198.x.
5
Role of giant depolarizing potentials in shaping synaptic currents in the developing hippocampus.
Crit Rev Neurobiol. 2006;18(1-2):13-23. doi: 10.1615/critrevneurobiol.v18.i1-2.30.
6
Medial Ganglionic Eminence Progenitors Transplanted into Hippocampus Integrate in a Functional and Subtype-Appropriate Manner.
eNeuro. 2017 Apr 12;4(2). doi: 10.1523/ENEURO.0359-16.2017. eCollection 2017 Mar-Apr.
7
GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex.
Neuron. 2020 Jan 8;105(1):75-92.e5. doi: 10.1016/j.neuron.2019.10.008. Epub 2019 Nov 25.
8
Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain.
J Neurosci. 2006 Jul 12;26(28):7380-9. doi: 10.1523/JNEUROSCI.1540-06.2006.
10
ATP contributes to the generation of network-driven giant depolarizing potentials in the neonatal rat hippocampus.
J Physiol. 2005 Jun 15;565(Pt 3):981-92. doi: 10.1113/jphysiol.2005.085621. Epub 2005 Apr 21.

引用本文的文献

1
Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development.
Neuron. 2025 Jun 4;113(11):1805-1822.e7. doi: 10.1016/j.neuron.2025.03.005. Epub 2025 Mar 26.
4
Excitatory synchronization of rat hippocampal interneurons during network activation .
Front Cell Neurosci. 2023 Mar 9;17:1129991. doi: 10.3389/fncel.2023.1129991. eCollection 2023.
5
Heterogeneous mechanisms for synchronization of networks of resonant neurons under different E/I balance regimes.
Front Netw Physiol. 2022 Sep 30;2:975951. doi: 10.3389/fnetp.2022.975951. eCollection 2022.
6
Step by step: cells with multiple functions in cortical circuit assembly.
Nat Rev Neurosci. 2022 Jul;23(7):395-410. doi: 10.1038/s41583-022-00585-6. Epub 2022 Apr 14.
7
The Emergence of Network Activity Patterns in the Somatosensory Cortex - An Early Window to Autism Spectrum Disorders.
Neuroscience. 2021 Jul 1;466:298-309. doi: 10.1016/j.neuroscience.2021.04.005. Epub 2021 Apr 19.
9
GABAergic interneurons excite neonatal hippocampus in vivo.
Sci Adv. 2020 Jun 12;6(24):eaba1430. doi: 10.1126/sciadv.aba1430. eCollection 2020 Jun.

本文引用的文献

2
Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons.
Neuron. 2015 Mar 18;85(6):1257-72. doi: 10.1016/j.neuron.2015.02.020. Epub 2015 Mar 5.
3
Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.
J Neurosci. 2015 Feb 25;35(8):3616-24. doi: 10.1523/JNEUROSCI.4166-14.2015.
4
Behavioral state-dependent modulation of distinct interneuron subtypes and consequences for circuit function.
Curr Opin Neurobiol. 2014 Dec;29:118-25. doi: 10.1016/j.conb.2014.07.007. Epub 2014 Jul 22.
5
New insights into the classification and nomenclature of cortical GABAergic interneurons.
Nat Rev Neurosci. 2013 Mar;14(3):202-16. doi: 10.1038/nrn3444. Epub 2013 Feb 6.
6
8
Pioneer GABA cells comprise a subpopulation of hub neurons in the developing hippocampus.
Neuron. 2011 Aug 25;71(4):695-709. doi: 10.1016/j.neuron.2011.06.018.
9
A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity.
J Neurosci. 2011 Jul 27;31(30):10948-70. doi: 10.1523/JNEUROSCI.0323-11.2011.
10
Synaptogenesis of electrical and GABAergic synapses of fast-spiking inhibitory neurons in the neocortex.
J Neurosci. 2011 Jul 27;31(30):10767-75. doi: 10.1523/JNEUROSCI.6655-10.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验