Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States.
ACS Nano. 2016 Mar 22;10(3):3738-46. doi: 10.1021/acsnano.6b00355. Epub 2016 Mar 7.
Operando characterization of gas-solid reactions at the atomic scale is of great importance for determining the mechanism of catalysis. This is especially true in the study of heterostructures because of structural correlation between the different parts. However, such experiments are challenging and have rarely been accomplished. In this work, atomic scale redox dynamics of Ag/AgCl heterostructures have been studied using in situ environmental transmission electron microscopy (ETEM) in combination with density function theory (DFT) calculations. The reduction of Ag/AgCl to Ag is likely a result of the formation of Cl vacancies while Ag(+) ions accept electrons. The oxidation process of Ag/AgCl has been observed: rather than direct replacement of Cl by O, the Ag/AgCl nanocatalyst was first reduced to Ag, and then Ag was oxidized to different phases of silver oxide under different O2 partial pressures. Ag2O formed at low O2 partial pressure, whereas AgO formed at atmospheric pressure. By combining in situ ETEM observation and DFT calculations, this structural evolution is characterized in a distinct nanoscale environment.
在原子尺度上对气固反应进行原位表征对于确定催化机制非常重要。在研究异质结构时尤其如此,因为不同部分之间存在结构相关性。然而,这样的实验具有挑战性,很少能够完成。在这项工作中,使用原位环境透射电子显微镜(ETEM)结合密度泛函理论(DFT)计算研究了 Ag/AgCl 异质结构的原子尺度氧化还原动力学。Ag/AgCl 还原为 Ag 可能是由于 Cl 空位的形成,而 Ag(+) 离子接受电子。已经观察到 Ag/AgCl 的氧化过程:不是 Cl 直接被 O 取代,而是 Ag/AgCl 纳米催化剂首先被还原为 Ag,然后在不同的 O2 分压下 Ag 被氧化为不同相的氧化银。在低 O2 分压下形成 Ag2O,而在大气压下形成 AgO。通过原位 ETEM 观察和 DFT 计算相结合,这种结构演化在独特的纳米尺度环境中得到了表征。