Suppr超能文献

独立成分分析揭示的肌萎缩侧索硬化症中的代谢空间连通性

Metabolic spatial connectivity in amyotrophic lateral sclerosis as revealed by independent component analysis.

作者信息

Pagani Marco, Öberg Johanna, De Carli Fabrizio, Calvo Andrea, Moglia Cristina, Canosa Antonio, Nobili Flavio, Morbelli Silvia, Fania Piercarlo, Cistaro Angelina, Chiò Adriano

机构信息

Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy.

Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden.

出版信息

Hum Brain Mapp. 2016 Mar;37(3):942-53. doi: 10.1002/hbm.23078. Epub 2015 Dec 24.

Abstract

OBJECTIVES

Positron emission tomography (PET) and volume of interest (VOI) analysis have recently shown in amyotrophic lateral sclerosis (ALS) an accuracy of 93% in differentiating patients from controls. The aim of this study was to disclose by spatial independent component analysis (ICA) the brain networks involved in ALS pathological processes and evaluate their discriminative value in separating patients from controls.

EXPERIMENTAL DESIGN

Two hundred fifty-nine ALS patients and 40 age- and sex-matched control subjects underwent brain 18F-2-fluoro-2-deoxy-D-glucose PET (FDG-PET). Spatial ICA of the preprocessed FDG-PET images was performed. Intensity values were converted to z-scores and binary masks were used as data-driven VOIs. The accuracy of this classifier was tested versus a validated system processing intensity signals in 27 brain meta-VOIs. A support vector machine was independently applied to both datasets and the 'leave-one-out' technique verified the general validity of results.

PRINCIPAL OBSERVATIONS

The 8 components selected as pathophysiologically meaningful discriminated patients from controls with 99.0% accuracy, the discriminating value of bilateral cerebellum/midbrain alone representing 96.3%. Among the meta-VOIs, right temporal lobe alone reached an accuracy of 93.7%.

CONCLUSIONS

Spatial ICA identified in a very large cohort of ALS patients distinct spatial networks showing a high discriminatory value, improving substantially on the previously obtained accuracy. The cerebellar/midbrain component accounted for the highest accuracy in separating ALS patients from controls. Spatial ICA and multivariate analysis perform better than univariate semi-quantification methods in identifying the neurodegenerative features of ALS and pave the way for inclusion of PET in clinical trials and early diagnosis.

摘要

目的

正电子发射断层扫描(PET)和感兴趣区(VOI)分析最近显示,在肌萎缩侧索硬化症(ALS)患者中,区分患者与对照的准确率为93%。本研究的目的是通过空间独立成分分析(ICA)揭示参与ALS病理过程的脑网络,并评估其在区分患者与对照方面的鉴别价值。

实验设计

259例ALS患者和40例年龄及性别匹配的对照受试者接受了脑部18F - 2 - 氟 - 2 - 脱氧 - D - 葡萄糖PET(FDG - PET)检查。对预处理后的FDG - PET图像进行空间ICA分析。强度值转换为z分数,并使用二元掩码作为数据驱动的VOI。将该分类器的准确率与在27个脑元VOI中处理强度信号的经过验证的系统进行比较测试。支持向量机独立应用于两个数据集,“留一法”技术验证了结果的总体有效性。

主要观察结果

选择的8个被认为具有病理生理学意义的成分区分患者与对照的准确率为99.0%,仅双侧小脑/中脑的鉴别价值就达96.3%。在元VOI中,仅右侧颞叶的准确率达到93.7%。

结论

空间ICA在非常大的ALS患者队列中识别出具有高鉴别价值的独特空间网络,大大提高了先前获得的准确率。小脑/中脑成分在区分ALS患者与对照方面准确率最高。在识别ALS的神经退行性特征方面,空间ICA和多变量分析比单变量半定量方法表现更好,为将PET纳入临床试验和早期诊断铺平了道路。

相似文献

1
Metabolic spatial connectivity in amyotrophic lateral sclerosis as revealed by independent component analysis.
Hum Brain Mapp. 2016 Mar;37(3):942-53. doi: 10.1002/hbm.23078. Epub 2015 Dec 24.
2
Prospective Validation of 18F-FDG Brain PET Discriminant Analysis Methods in the Diagnosis of Amyotrophic Lateral Sclerosis.
J Nucl Med. 2016 Aug;57(8):1238-43. doi: 10.2967/jnumed.115.166272. Epub 2016 Mar 3.
3
Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis.
Neurology. 2014 Sep 16;83(12):1067-74. doi: 10.1212/WNL.0000000000000792. Epub 2014 Aug 13.
4
Role of brain 2-[F]fluoro-2-deoxy-D-glucose-positron-emission tomography as survival predictor in amyotrophic lateral sclerosis.
Eur J Nucl Med Mol Imaging. 2023 Feb;50(3):784-791. doi: 10.1007/s00259-022-05987-3. Epub 2022 Oct 29.
5
Multicenter validation of [F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls.
Amyotroph Lateral Scler Frontotemporal Degener. 2018 Nov;19(7-8):570-577. doi: 10.1080/21678421.2018.1476548. Epub 2018 Jun 4.
6
Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset.
Eur J Nucl Med Mol Imaging. 2012 Feb;39(2):251-9. doi: 10.1007/s00259-011-1979-6. Epub 2011 Nov 17.
8
Testing the diagnostic accuracy of [18F]FDG-PET in discriminating spinal- and bulbar-onset amyotrophic lateral sclerosis.
Eur J Nucl Med Mol Imaging. 2019 May;46(5):1117-1131. doi: 10.1007/s00259-018-4246-2. Epub 2019 Jan 7.
9
18F-FDG-PET correlates of cognitive impairment in ALS.
Neurology. 2016 Jan 5;86(1):44-9. doi: 10.1212/WNL.0000000000002242. Epub 2015 Nov 20.
10
Combined brain and spinal FDG PET allows differentiation between ALS and ALS mimics.
Eur J Nucl Med Mol Imaging. 2020 Oct;47(11):2681-2690. doi: 10.1007/s00259-020-04786-y. Epub 2020 Apr 20.

引用本文的文献

2
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging.
Wiley Interdiscip Rev Comput Stat. 2023 Sep-Oct;15(5). doi: 10.1002/wics.1606. Epub 2023 Apr 3.
3
Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: from structure to metabolism.
J Neurol. 2024 May;271(5):2238-2257. doi: 10.1007/s00415-024-12201-x. Epub 2024 Feb 17.
6
The Detection of Invisible Abnormal Metabolism in the FDG-PET Images of Patients With Anti-LGI1 Encephalitis by Machine Learning.
Front Neurol. 2022 May 30;13:812439. doi: 10.3389/fneur.2022.812439. eCollection 2022.
7
Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration.
Neural Regen Res. 2022 Nov;17(11):2335-2341. doi: 10.4103/1673-5374.336139.
10
Brain Connectivity and Network Analysis in Amyotrophic Lateral Sclerosis.
Neurol Res Int. 2022 Feb 7;2022:1838682. doi: 10.1155/2022/1838682. eCollection 2022.

本文引用的文献

1
Cortical excitability changes distinguish the motor neuron disease phenotypes from hereditary spastic paraplegia.
Eur J Neurol. 2015 May;22(5):826-31, e57-8. doi: 10.1111/ene.12669. Epub 2015 Feb 12.
3
Comparing brain structural MRI and metabolic FDG-PET changes in patients with ALS-FTD: 'the chicken or the egg?' question.
J Neurol Neurosurg Psychiatry. 2015 Sep;86(9):952-8. doi: 10.1136/jnnp-2014-308239. Epub 2014 Dec 17.
4
Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes.
Lancet Neurol. 2014 Dec;13(12):1228-40. doi: 10.1016/S1474-4422(14)70167-X. Epub 2014 Nov 10.
5
Positron emission tomography neuroimaging in amyotrophic lateral sclerosis: what is new?
Q J Nucl Med Mol Imaging. 2014 Dec;58(4):344-54. Epub 2014 Nov 6.
6
Cortical hypermetabolism in MCI subjects: a compensatory mechanism?
Eur J Nucl Med Mol Imaging. 2015 Mar;42(3):447-58. doi: 10.1007/s00259-014-2919-z. Epub 2014 Sep 30.
7
Prognostic classification of mild cognitive impairment and Alzheimer's disease: MRI independent component analysis.
Psychiatry Res. 2014 Nov 30;224(2):81-8. doi: 10.1016/j.pscychresns.2014.08.005. Epub 2014 Aug 17.
8
Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis.
Neurology. 2014 Sep 16;83(12):1067-74. doi: 10.1212/WNL.0000000000000792. Epub 2014 Aug 13.
10
The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients.
Eur J Nucl Med Mol Imaging. 2014 May;41(5):844-52. doi: 10.1007/s00259-013-2667-5. Epub 2014 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验