Pagani Marco, Öberg Johanna, De Carli Fabrizio, Calvo Andrea, Moglia Cristina, Canosa Antonio, Nobili Flavio, Morbelli Silvia, Fania Piercarlo, Cistaro Angelina, Chiò Adriano
Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy.
Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden.
Hum Brain Mapp. 2016 Mar;37(3):942-53. doi: 10.1002/hbm.23078. Epub 2015 Dec 24.
Positron emission tomography (PET) and volume of interest (VOI) analysis have recently shown in amyotrophic lateral sclerosis (ALS) an accuracy of 93% in differentiating patients from controls. The aim of this study was to disclose by spatial independent component analysis (ICA) the brain networks involved in ALS pathological processes and evaluate their discriminative value in separating patients from controls.
Two hundred fifty-nine ALS patients and 40 age- and sex-matched control subjects underwent brain 18F-2-fluoro-2-deoxy-D-glucose PET (FDG-PET). Spatial ICA of the preprocessed FDG-PET images was performed. Intensity values were converted to z-scores and binary masks were used as data-driven VOIs. The accuracy of this classifier was tested versus a validated system processing intensity signals in 27 brain meta-VOIs. A support vector machine was independently applied to both datasets and the 'leave-one-out' technique verified the general validity of results.
The 8 components selected as pathophysiologically meaningful discriminated patients from controls with 99.0% accuracy, the discriminating value of bilateral cerebellum/midbrain alone representing 96.3%. Among the meta-VOIs, right temporal lobe alone reached an accuracy of 93.7%.
Spatial ICA identified in a very large cohort of ALS patients distinct spatial networks showing a high discriminatory value, improving substantially on the previously obtained accuracy. The cerebellar/midbrain component accounted for the highest accuracy in separating ALS patients from controls. Spatial ICA and multivariate analysis perform better than univariate semi-quantification methods in identifying the neurodegenerative features of ALS and pave the way for inclusion of PET in clinical trials and early diagnosis.
正电子发射断层扫描(PET)和感兴趣区(VOI)分析最近显示,在肌萎缩侧索硬化症(ALS)患者中,区分患者与对照的准确率为93%。本研究的目的是通过空间独立成分分析(ICA)揭示参与ALS病理过程的脑网络,并评估其在区分患者与对照方面的鉴别价值。
259例ALS患者和40例年龄及性别匹配的对照受试者接受了脑部18F - 2 - 氟 - 2 - 脱氧 - D - 葡萄糖PET(FDG - PET)检查。对预处理后的FDG - PET图像进行空间ICA分析。强度值转换为z分数,并使用二元掩码作为数据驱动的VOI。将该分类器的准确率与在27个脑元VOI中处理强度信号的经过验证的系统进行比较测试。支持向量机独立应用于两个数据集,“留一法”技术验证了结果的总体有效性。
选择的8个被认为具有病理生理学意义的成分区分患者与对照的准确率为99.0%,仅双侧小脑/中脑的鉴别价值就达96.3%。在元VOI中,仅右侧颞叶的准确率达到93.7%。
空间ICA在非常大的ALS患者队列中识别出具有高鉴别价值的独特空间网络,大大提高了先前获得的准确率。小脑/中脑成分在区分ALS患者与对照方面准确率最高。在识别ALS的神经退行性特征方面,空间ICA和多变量分析比单变量半定量方法表现更好,为将PET纳入临床试验和早期诊断铺平了道路。