Suppr超能文献

脑 2-[F]氟代-2-脱氧-D-葡萄糖正电子发射断层扫描在肌萎缩侧索硬化症中作为生存预测指标的作用。

Role of brain 2-[F]fluoro-2-deoxy-D-glucose-positron-emission tomography as survival predictor in amyotrophic lateral sclerosis.

机构信息

ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Via Cherasco 15, 10126, Turin, Italy.

SC Neurologia 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy.

出版信息

Eur J Nucl Med Mol Imaging. 2023 Feb;50(3):784-791. doi: 10.1007/s00259-022-05987-3. Epub 2022 Oct 29.

Abstract

PURPOSE

The identification of prognostic tools in amyotrophic lateral sclerosis (ALS) would improve the design of clinical trials, the management of patients, and life planning. We aimed to evaluate the accuracy of brain 2-[F]fluoro-2-deoxy-D-glucose-positron-emission tomography (2-[F]FDG-PET) as an independent predictor of survival in ALS.

METHODS

A prospective cohort study enrolled 418 ALS patients, who underwent brain 2-[F]FDG-PET at diagnosis and whose survival time was available. We discretized the survival time in a finite number of classes in a data-driven fashion by employing a k-means-like strategy. We identified "hot brain regions" with maximal power in discriminating survival classes, by evaluating the Laplacian scores in a class-aware fashion. We retained the top-m features for each class to train the classification systems (i.e., a support vector machine, SVM), using 10% of the ALS cohort as test set.

RESULTS

Data were discretized in three survival profiles: 0-2 years, 2-5 years, and > 5 years. SVM resulted in an error rate < 20% for two out of three classes separately. As for class one, the discriminant clusters included left caudate body and anterior cingulate cortex. The most discriminant regions were bilateral cerebellar pyramid in class two, and right cerebellar dentate nucleus, and left cerebellar nodule in class three.

CONCLUSION

Brain 2-[F]FDG-PET along with artificial intelligence was able to predict with high accuracy the survival time range in our ALS cohort. Healthcare professionals can benefit from this prognostic tool for planning patients' management and follow-up. 2-[F]FDG-PET represents a promising biomarker for individual patients' stratification in clinical trials. The lack of a multicentre external validation of the model warrants further studies to evaluate its generalization capability.

摘要

目的

在肌萎缩侧索硬化症(ALS)中识别预后工具将改善临床试验设计、患者管理和生活规划。我们旨在评估脑 2-[F]氟-2-脱氧-D-葡萄糖正电子发射断层扫描(2-[F]FDG-PET)作为 ALS 患者生存的独立预测因子的准确性。

方法

一项前瞻性队列研究纳入了 418 名 ALS 患者,他们在诊断时接受了脑 2-[F]FDG-PET 检查,并且生存时间可用。我们通过采用类似于 k-均值的策略,以数据驱动的方式将生存时间离散化为有限数量的类别。我们通过以类感知的方式评估拉普拉斯分数,确定具有最大生存分类判别能力的“热脑区”。我们为每个类保留了前-m 个特征来训练分类系统(即支持向量机,SVM),并使用 10%的 ALS 队列作为测试集。

结果

数据被离散化为三种生存曲线:0-2 年、2-5 年和>5 年。SVM 对其中两种情况的分类错误率<20%。对于第一种情况,判别聚类包括左侧尾状核体和前扣带皮层。在第二种情况中,最具判别力的区域是双侧小脑锥体,而在第三种情况中,最具判别力的区域是右侧小脑齿状核和左侧小脑小结。

结论

脑 2-[F]FDG-PET 结合人工智能能够准确预测我们的 ALS 队列的生存时间范围。医疗保健专业人员可以从这种预后工具中受益,以规划患者的管理和随访。2-[F]FDG-PET 代表了临床试验中个体患者分层的有前途的生物标志物。该模型缺乏多中心外部验证,因此需要进一步研究来评估其推广能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/495f/9852209/8497d4437578/259_2022_5987_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验