Swenson Samantha, Cannon Andrew, Harris Nicholas J, Taylor Nicholas G, Fox Jennifer L, Khalimonchuk Oleh
From the Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 and.
the Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424.
J Biol Chem. 2016 May 6;291(19):10411-25. doi: 10.1074/jbc.M115.707539. Epub 2016 Mar 3.
Heme a is an essential cofactor for function of cytochrome c oxidase in the mitochondrial electron transport chain. Several evolutionarily conserved enzymes have been implicated in the biosynthesis of heme a, including the heme a synthase Cox15. However, the structure of Cox15 is unknown, its enzymatic mechanism and the role of active site residues remain debated, and recent discoveries suggest additional chaperone-like roles for this enzyme. Here, we investigated Cox15 in the model eukaryote Saccharomyces cerevisiae via several approaches to examine its oligomeric states and determine the effects of active site and human pathogenic mutations. Our results indicate that Cox15 exhibits homotypic interactions, forming highly stable complexes dependent upon hydrophobic interactions. This multimerization is evolutionarily conserved and independent of heme levels and heme a synthase catalytic activity. Four conserved histidine residues are demonstrated to be critical for eukaryotic heme a synthase activity and cannot be substituted with other heme-ligating amino acids. The 20-residue linker region connecting the two conserved domains of Cox15 is also important; removal of this linker impairs both Cox15 multimerization and enzymatic activity. Mutations of COX15 causing single amino acid conversions associated with fatal infantile hypertrophic cardiomyopathy and the neurological disorder Leigh syndrome result in impaired stability (S344P) or catalytic function (R217W), and the latter mutation affects oligomeric properties of the enzyme. Structural modeling of Cox15 suggests these two mutations affect protein folding and heme binding, respectively. We conclude that Cox15 multimerization is important for heme a biosynthesis and/or transfer to maturing cytochrome c oxidase.
血红素a是线粒体电子传递链中细胞色素c氧化酶发挥功能所必需的辅因子。几种进化上保守的酶参与了血红素a的生物合成,包括血红素a合酶Cox15。然而,Cox15的结构尚不清楚,其酶促机制以及活性位点残基的作用仍存在争议,并且最近的发现表明该酶还具有额外的伴侣样作用。在这里,我们通过几种方法研究了模式真核生物酿酒酵母中的Cox15,以检查其寡聚状态,并确定活性位点和人类致病突变的影响。我们的结果表明,Cox15表现出同型相互作用,形成高度稳定的复合物,依赖于疏水相互作用。这种多聚化在进化上是保守的,并且独立于血红素水平和血红素a合酶催化活性。四个保守的组氨酸残基被证明对真核血红素a合酶活性至关重要,不能被其他血红素连接氨基酸替代。连接Cox15两个保守结构域的20个氨基酸的连接区也很重要;去除该连接区会损害Cox15的多聚化和酶活性。导致与致命性婴儿肥厚性心肌病和神经系统疾病 Leigh 综合征相关的单氨基酸转换的COX15突变会导致稳定性受损(S344P)或催化功能受损(R217W),后一种突变会影响该酶的寡聚特性。Cox15的结构模型表明,这两个突变分别影响蛋白质折叠和血红素结合。我们得出结论,Cox15多聚化对血红素a的生物合成和/或向成熟细胞色素c氧化酶的转移很重要。