Shapiro Orr H, Kramarsky-Winter Esti, Gavish Assaf R, Stocker Roman, Vardi Assaf
Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Nat Commun. 2016 Mar 4;7:10860. doi: 10.1038/ncomms10860.
Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology.
珊瑚礁及其所支撑的独特生态系统正面临着来自人类活动和气候变化的严峻威胁。由于缺乏用于研究珊瑚与其环境之间微观尺度相互作用的可靠方法,我们对这些威胁的理解受到了阻碍。在此,我们展示了一个实验平台——芯片上的珊瑚,它结合了微繁殖和微流体技术,能够对活珊瑚虫进行直接的微观研究。微小且透明的珊瑚微繁殖体非常适合实时成像显微镜观察,而微流体平台则便于在可控环境条件下进行长期可视化观察。我们通过以先前无法达到的时空分辨率对珊瑚微繁殖体进行成像,证明了这种方法的有效性,为包括珊瑚钙化、珊瑚与病原体相互作用以及藻类共生体丧失(珊瑚白化)在内的多个微观尺度过程提供了新的见解。因此,芯片上的珊瑚为在微观尺度上研究珊瑚体内生理学提供了一种强大的方法,为珊瑚生物学开辟了新的视野。