Suppr超能文献

在 submerged 条件下,通过 Cotylidia pannosa 对麦麸进行生物处理以生产木质纤维素酶混合物。 (注:submerged 常见释义为“淹没的”,这里结合语境,推测可能是“深层的”意思,即深层培养条件,但原英文中该词拼写有误,正确拼写可能是“submerged” )

Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions.

作者信息

Sharma Deepika, Garlapat Vijay Kumar, Goel Gunjan

机构信息

a Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat , India.

出版信息

Bioengineered. 2016 Apr 2;7(2):88-97. doi: 10.1080/21655979.2016.1160190.

Abstract

Characterization and production of efficient lignocellulytic enzyme cocktails for biomass conversion is the need for biofuel industry. The present investigation reports the modeling and optimization studies of lignocellulolytic enzyme cocktail production by Cotylidia pannosa under submerged conditions. The predominant enzyme activities of cellulase, xylanase and laccase were produced in the cocktail through submerged conditions using wheat bran as a substrate. A central composite design approach was utilized to model the production process using temperature, pH, incubation time and agitation as input variables with the goal of optimizing the output variables namely cellulase, xylanase and laccase activities. The effect of individual, square and interaction terms on cellulase, xylanase and laccase activities were depicted through the non-linear regression equations with significant R(2) and P-values. An optimized value of 20 U/ml, 17 U/ml and 13 U/ml of cellulase, xylanase and laccase activities, respectively, were obtained with a media pH of 5.0 in 77 h at 31C, 140 rpm using wheatbran as a substrate. Overall, the present study introduces a fungal strain, capable of producing lignocellulolytic enzyme cocktail for subsequent applications in biofuel industry.

摘要

开发用于生物质转化的高效木质纤维素酶混合物并对其进行表征是生物燃料行业的需求。本研究报告了在 submerged 条件下, pannosa 担子菌生产木质纤维素酶混合物的建模和优化研究。通过以麦麸为底物的 submerged 条件,在混合物中产生了主要的纤维素酶、木聚糖酶和漆酶活性。采用中心复合设计方法,以温度、pH值、培养时间和搅拌为输入变量,对生产过程进行建模,目标是优化输出变量,即纤维素酶、木聚糖酶和漆酶活性。通过具有显著R(2)和P值的非线性回归方程,描述了个体、平方和交互项对纤维素酶、木聚糖酶和漆酶活性的影响。以麦麸为底物,在31℃、140rpm的条件下,77小时内培养基pH值为5.0时,纤维素酶、木聚糖酶和漆酶活性的优化值分别为20U/ml、17U/ml和13U/ml。总体而言,本研究引入了一种能够生产木质纤维素酶混合物的真菌菌株,可用于生物燃料行业的后续应用。

相似文献

4
Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes.
J Ind Microbiol Biotechnol. 2008 Nov;35(11):1531-8. doi: 10.1007/s10295-008-0454-2. Epub 2008 Aug 21.
7
Optimization of conditions for the production of lignocellulolytic enzymes by sp. ksn-11 utilizing agro-wastes under submerged condition.
Prep Biochem Biotechnol. 2019;49(9):927-934. doi: 10.1080/10826068.2019.1643735. Epub 2019 Jul 18.
10
The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens.
Appl Biochem Biotechnol. 2008 Mar;146(1-3):119-28. doi: 10.1007/s12010-007-8049-3. Epub 2007 Sep 22.

引用本文的文献

1
Advances in the production of fungi-derived lignocellulolytic enzymes using agricultural wastes.
Mycology. 2023 Sep 13;15(4):523-537. doi: 10.1080/21501203.2023.2253827. eCollection 2024.
2
Role of microbial laccases in valorization of lignocellulosic biomass to bioethanol.
Front Bioeng Biotechnol. 2024 Jul 23;12:1441075. doi: 10.3389/fbioe.2024.1441075. eCollection 2024.
3
Transcriptome Analysis of Strain GGF6 Reveals the Diversity of Proteins Involved in Lignocellulose Degradation and Ligninolytic Function.
Indian J Microbiol. 2022 Dec;62(4):569-582. doi: 10.1007/s12088-022-01037-6. Epub 2022 Aug 25.
4
An insight into transcriptome of Cyathus bulleri for lignocellulase expression on wheat bran.
Arch Microbiol. 2021 Aug;203(6):3727-3736. doi: 10.1007/s00203-021-02326-2. Epub 2021 Apr 20.
5
Impact of process parameters and plant polysaccharide hydrolysates in cellulase production by and under wheat bran based solid state fermentation.
Biotechnol Rep (Amst). 2020 Jan 2;25:e00416. doi: 10.1016/j.btre.2019.e00416. eCollection 2020 Mar.
6
Fungal Laccase Production from Lignocellulosic Agricultural Wastes by Solid-State Fermentation: A Review.
Microorganisms. 2019 Dec 9;7(12):665. doi: 10.3390/microorganisms7120665.
7
Improving the properties of straw biomass rattan by corn starch.
Bioengineered. 2019 Dec;10(1):659-667. doi: 10.1080/21655979.2019.1688127.
8
Preparation and characterization of coffee hull fiber for reinforcing application in thermoplastic composites.
Bioengineered. 2019 Dec;10(1):397-408. doi: 10.1080/21655979.2019.1661694.

本文引用的文献

2
Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.
Enzyme Microb Technol. 2015 Nov;79-80:42-8. doi: 10.1016/j.enzmictec.2015.06.020. Epub 2015 Jul 17.
3
Production of structurally diverse wheat arabinoxylan hydrolyzates using combinations of xylanase and arabinofuranosidase.
Carbohydr Polym. 2015 Nov 5;132:452-9. doi: 10.1016/j.carbpol.2015.05.083. Epub 2015 Jun 14.
4
Continuous hydrolysis of carboxymethyl cellulose with cellulase aggregates trapped inside membranes.
Enzyme Microb Technol. 2015 Oct;78:34-9. doi: 10.1016/j.enzmictec.2015.06.005. Epub 2015 Jun 15.
6
Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce.
Biotechnol Biofuels. 2014 Dec 24;7(1):177. doi: 10.1186/s13068-014-0177-8. eCollection 2014.
7
Characterization of lignocellulolytic enzymes from white-rot fungi.
Curr Microbiol. 2015 Apr;70(4):485-98. doi: 10.1007/s00284-014-0743-0. Epub 2014 Dec 9.
9
Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions.
PeerJ. 2014 Jun 10;2:e402. doi: 10.7717/peerj.402. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验