Berend Daniel, Dolev Shlomi, Frenkel Sergey, Hanemann Ariel
Computer Science Department, Ben Gurion University of the Negev, Beer Sheva, Israel; Mathematics Department, Ben Gurion University of the Negev, Beer Sheva, Israel.
Computer Science Department, Ben Gurion University of the Negev, Beer Sheva, Israel.
Neural Netw. 2016 May;77:87-94. doi: 10.1016/j.neunet.2016.02.001. Epub 2016 Feb 12.
The holographic conceptual approach to cognitive processes in the human brain suggests that, in some parts of the brain, each part of the memory (a neuron or a group of neurons) contains some information regarding the entire data. In Dolev and Frenkel (2010, 2012) we demonstrated how to encode data in a holographic manner using the Walsh-Hadamard transform. The encoding is performed on randomized information, that is then represented by a set of Walsh-Hadamard coefficients. These coefficients turn out to have holographic properties. Namely, any portion of the set of coefficients defines a "blurry image" of the original data. In this work, we describe a built-in error correction technique--enlarging the width of the matrix used in the Walsh-Hadamard transform to produce a rectangular Hadamard matrix. By adding this redundancy, the data can bear more errors, resulting in a system that is not affected by missing coefficients up to a certain threshold. Above this threshold, the loss of data is reflected by getting a "blurry image" rather than a concentrated damage. We provide a heuristic analysis of the ability of the technique to correct errors, as well as an example of an image saved using the system. Finally, we give an example of a simple implementation of our approach using neural networks as a proof of concept.
人类大脑认知过程的全息概念方法表明,在大脑的某些部分,记忆的每个部分(一个神经元或一组神经元)都包含有关整个数据的一些信息。在多列夫和弗伦克尔(2010年、2012年)的研究中,我们展示了如何使用沃尔什 - 哈达玛变换以全息方式对数据进行编码。编码是对随机信息执行的,然后由一组沃尔什 - 哈达玛系数表示。这些系数被证明具有全息特性。也就是说,系数集的任何部分都定义了原始数据的“模糊图像”。在这项工作中,我们描述了一种内置的纠错技术——扩大沃尔什 - 哈达玛变换中使用的矩阵宽度以生成矩形哈达玛矩阵。通过添加这种冗余,数据能够承受更多错误,从而形成一个在达到一定阈值之前不受缺失系数影响的系统。超过这个阈值,数据丢失会通过得到“模糊图像”而不是集中的损坏来体现。我们对该技术的纠错能力进行了启发式分析,并给出了使用该系统保存图像的示例。最后,我们给出了一个使用神经网络作为概念验证的方法的简单实现示例。