Kumar A, Nune K C, Basu B, Misra R D K
Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, USA.
Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka, India.
J Biomater Appl. 2016 May;30(10):1505-16. doi: 10.1177/0885328216631670. Epub 2016 Mar 4.
We elucidate here the mechanistic contribution of a novel electroconductive hydroxyapatite-20 wt.% titanium disilicide (HA-TiSi2) composite system in favorably modulating osteoblast functions in relation to the monolithic HA. The higher electrical conductivity of HA-TiSi2(σDC ∼ 67.117 ± 3.57 S/m) in comparison to glass sample effectively guided the electroactive myoblast, leading to their significant alignment and proliferation. This favorable behavior is attributed to the formation of small electrochemical cells between HA and TiSi2phase, which produce a small electric field, directing the electroactive myoblast to migrate and grow in a particular direction. In contrast, no impact of TiSi2on osteoblast function was observed because of their inability to respond to small electric field. However, thein vitrobioactivity in simulated body fluid indicated the nucleation and growth of apatite crystals. Moreover, in the context of load-bearing capability, the presence of 20 wt.% TiSi2in HA led to increase in the fracture toughness by ∼100%. This study underscores the effectiveness of HA-TiSi2in favorably modulating the cellular activity, myoblast in particular.
我们在此阐明了一种新型导电羟基磷灰石-20 wt.% 二硅化钛(HA-TiSi₂)复合体系在相对于块状HA有利地调节成骨细胞功能方面的机制贡献。与玻璃样品相比,HA-TiSi₂(σDC ∼ 67.117 ± 3.57 S/m)具有更高的电导率,有效地引导了电活性成肌细胞,使其显著排列并增殖。这种有利行为归因于HA和TiSi₂相之间形成的小电化学电池,其产生一个小电场,引导电活性成肌细胞沿特定方向迁移和生长。相比之下,由于TiSi₂无法响应小电场,因此未观察到其对成骨细胞功能的影响。然而,在模拟体液中的体外生物活性表明了磷灰石晶体的成核和生长。此外,在承载能力方面,HA中20 wt.% TiSi₂的存在使断裂韧性提高了约100%。本研究强调了HA-TiSi₂在有利地调节细胞活性,特别是成肌细胞活性方面的有效性。