Suppr超能文献

利用公开可用的遗传数据,根据血糖异常风险对预防冠心病的脂质调节治疗靶点进行优先级排序。

Harnessing publicly available genetic data to prioritize lipid modifying therapeutic targets for prevention of coronary heart disease based on dysglycemic risk.

作者信息

Tragante Vinicius, Asselbergs Folkert W, Swerdlow Daniel I, Palmer Tom M, Moore Jason H, de Bakker Paul I W, Keating Brendan J, Holmes Michael V

机构信息

Department of Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.

Institute of Cardiovascular Science, University College London, 222 Euston Road, London, NW1 2DA, UK.

出版信息

Hum Genet. 2016 May;135(5):453-467. doi: 10.1007/s00439-016-1647-9. Epub 2016 Mar 5.

Abstract

Therapeutic interventions that lower LDL-cholesterol effectively reduce the risk of coronary artery disease (CAD). However, statins, the most widely prescribed LDL-cholesterol lowering drugs, increase diabetes risk. We used genome-wide association study (GWAS) data in the public domain to investigate the relationship of LDL-C and diabetes and identify loci encoding potential drug targets for LDL-cholesterol modification without causing dysglycemia. We obtained summary-level GWAS data for LDL-C from GLGC, glycemic traits from MAGIC, diabetes from DIAGRAM and CAD from CARDIoGRAMplusC4D consortia. Mendelian randomization analyses identified a one standard deviation (SD) increase in LDL-C caused an increased risk of CAD (odds ratio [OR] 1.63 (95 % confidence interval [CI] 1.55, 1.71), which was not influenced by removing SNPs associated with diabetes. LDL-C/CAD-associated SNPs showed consistent effect directions (binomial P = 6.85 × 10(-5)). Conversely, a 1-SD increase in LDL-C was causally protective of diabetes (OR 0.86; 95 % CI 0.81, 0.91), however LDL-cholesterol/diabetes-associated SNPs did not show consistent effect directions (binomial P = 0.15). HMGCR, our positive control, associated with LDL-C, CAD and a glycemic composite (derived from GWAS meta-analysis of four glycemic traits and diabetes). In contrast, PCSK9, APOB, LPA, CETP, PLG, NPC1L1 and ALDH2 were identified as "druggable" loci that alter LDL-C and risk of CAD without displaying associations with dysglycemia. In conclusion, LDL-C increases the risk of CAD and the relationship is independent of any association of LDL-C with diabetes. Loci that encode targets of emerging LDL-C lowering drugs do not associate with dysglycemia, and this provides provisional evidence that new LDL-C lowering drugs (such as PCSK9 inhibitors) may not influence risk of diabetes.

摘要

有效降低低密度脂蛋白胆固醇(LDL-C)的治疗干预措施可有效降低冠状动脉疾病(CAD)风险。然而,他汀类药物是最广泛使用的降低LDL-C的药物,却会增加糖尿病风险。我们利用公共领域的全基因组关联研究(GWAS)数据来研究LDL-C与糖尿病之间的关系,并确定编码潜在药物靶点的基因座,以在不引起血糖异常的情况下调节LDL-C。我们从GLGC获得了LDL-C的汇总水平GWAS数据,从MAGIC获得了血糖性状数据,从DIAGRAM获得了糖尿病数据,从CARDIoGRAMplusC4D联盟获得了CAD数据。孟德尔随机化分析表明,LDL-C每增加一个标准差(SD)会导致CAD风险增加(优势比[OR]为1.63(95%置信区间[CI]为1.55, 1.71)),去除与糖尿病相关的单核苷酸多态性(SNPs)对此并无影响。与LDL-C/CAD相关的SNPs显示出一致的效应方向(二项式P = 6.85×10⁻⁵)。相反,LDL-C每增加1个SD对糖尿病具有因果保护性(OR为0.86;95% CI为0.81, 0.91),然而与LDL-胆固醇/糖尿病相关的SNPs并未显示出一致的效应方向(二项式P = 0.15)。我们的阳性对照3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR)与LDL-C、CAD以及一个血糖综合指标(源自对四种血糖性状和糖尿病的GWAS荟萃分析)相关。相比之下,前蛋白转化酶枯草溶菌素9(PCSK9)、载脂蛋白B(APOB)、脂蛋白A(LPA)、胆固醇酯转运蛋白(CETP)、纤溶酶原(PLG)、尼曼匹克C1样蛋白1(NPC1L1)和乙醛脱氢酶2(ALDH2)被确定为“可成药”基因座,它们可改变LDL-C和CAD风险,且未显示出与血糖异常相关。总之LDL-C会增加CAD风险,且这种关系独立于LDL-C与糖尿病之间任何关联。编码新型LDL-C降低药物靶点的基因座与血糖异常无关,这为新型LDL-C降低药物(如PCSK9抑制剂)可能不会影响糖尿病风险提供了初步证据

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34e1/4835528/bceda4723a6f/439_2016_1647_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验