Suppr超能文献

使用不对称流场流分馏法分离银和金纳米颗粒:运行条件以及颗粒和膜电荷的影响

Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.

作者信息

Meisterjahn Boris, Wagner Stephan, von der Kammer Frank, Hennecke Dieter, Hofmann Thilo

机构信息

Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Department of Environmental Geosciences, University of Vienna, Althanstr 14 UZA II, 1090 Vienna, Austria.

Department of Environmental Geosciences, University of Vienna, Althanstr 14 UZA II, 1090 Vienna, Austria.

出版信息

J Chromatogr A. 2016 Apr 1;1440:150-159. doi: 10.1016/j.chroma.2016.02.059. Epub 2016 Feb 26.

Abstract

Flow-Field Flow Fractionation (Flow-FFF), coupled with online detection systems is one of the most promising tools available for the separation and quantification of engineered nanoparticles (ENPs) in complex matrices. To correctly relate the retention of nanoparticles in the Flow-FFF-channel to the particle size, ideal separation conditions must be met. This requires optimization of the parameters that influence the separation behavior. The aim of this study was therefore to systematically investigate and evaluate the influence of parameters such as the carrier liquid, the cross flow, and the membrane material, on the separation behavior of two metallic ENPs. For this purpose the retention, recovery, and separation efficiency of sterically stabilized silver nanoparticles (AgNPs) and electrostatically stabilized gold nanoparticles (AuNPs), which represent two materials widely used in investigations on environmental fate and ecotoxicology, were investigated against a parameter matrix of three different cross-flow densities, four representative carrier solutions, and two membrane materials. The use of a complex mixture of buffers, ionic and non-ionic surfactants (FL-70 solution) together with a medium cross-flow density provided an acceptable compromise in peak quality and recovery for both types of ENPs. However, these separation conditions do not represent a perfect match for both particle types at the same time (maximized recovery at maximized retention). It could be shown that the behavior of particles within Flow-FFF channels cannot be predicted or explained purely in terms of electrostatic interactions. Particles were irreversibly lost under conditions where the measured zeta potentials suggested that there should have been sufficient electrostatic repulsion to ensure stabilization of the particles in the Flow-FFF channel resulting in good recoveries. The wide variations that we observed in ENP behavior under different conditions, together with the different behavior that has been reported in published literature for the same NPs under similar conditions, indicate a need for improvement in the membrane materials used for Flow-FFF analysis of NPs. This research has shown that careful adjustment of separation conditions can result in acceptable, but not ideal, separation conditions for two fundamentally different stabilized materials, and that it may not be possible to separate a set of different particles under ideal conditions for each particle type. This therefore needs to be taking into account in method development and when interpreting FFF results from complex samples.

摘要

流场流分级法(Flow-FFF)与在线检测系统相结合,是用于分离和定量复杂基质中工程纳米颗粒(ENP)的最具前景的工具之一。为了正确地将纳米颗粒在Flow-FFF通道中的保留情况与粒径相关联,必须满足理想的分离条件。这需要优化影响分离行为的参数。因此,本研究的目的是系统地研究和评估诸如载液、错流和膜材料等参数对两种金属ENP分离行为的影响。为此,针对三种不同错流密度、四种代表性载液和两种膜材料的参数矩阵,研究了空间稳定化银纳米颗粒(AgNP)和静电稳定化金纳米颗粒(AuNP)的保留率、回收率和分离效率,这两种材料在环境归宿和生态毒理学研究中广泛使用。使用缓冲剂、离子和非离子表面活性剂的复杂混合物(FL-70溶液)以及中等错流密度,为两种类型的ENP在峰质量和回收率方面提供了可接受的折衷方案。然而,这些分离条件并不能同时代表两种颗粒类型的完美匹配(在最大保留率下实现最大回收率)。可以表明,Flow-FFF通道内颗粒的行为不能仅根据静电相互作用来预测或解释。在测量的zeta电位表明应该有足够的静电排斥以确保颗粒在Flow-FFF通道中稳定从而实现良好回收率的条件下,颗粒会不可逆地损失。我们在不同条件下观察到的ENP行为的广泛变化,以及在已发表文献中报道的相同NP在类似条件下的不同行为,表明用于NP的Flow-FFF分析的膜材料需要改进。本研究表明,仔细调整分离条件可以为两种根本不同的稳定化材料带来可接受但不理想的分离条件,并且可能无法在每种颗粒类型的理想条件下分离一组不同的颗粒。因此,在方法开发以及解释复杂样品的FFF结果时需要考虑到这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验