Suppr超能文献

眼前房中胚胎β细胞发育的无创体内成像。

Noninvasive in vivo imaging of embryonic β-cell development in the anterior chamber of the eye.

作者信息

Cras-Méneur Corentin, Elghazi Lynda, Fort Patrice, Bernal-Mizrachi Ernesto

机构信息

a Internal Medicine Department, Division of Metabolism, Endocrinology and Diabetes, University of Michigan in Ann Arbor , Ann Arbor , Michigan , USA.

b Ophthalmology Department, University of Michigan in Ann Arbor , Ann Arbor , Michigan , USA.

出版信息

Islets. 2016 Mar 3;8(2):35-47. doi: 10.1080/19382014.2016.1148236.

Abstract

The fetal environment plays a decisive role in modifying the risk for developing diabetes later in life. Developing novel methodology for noninvasive imaging of β-cell development in vivo under the controlled physiological conditions of the host can serve to understand how this environment affects β-cell growth and differentiation. A number of culture models have been designed for pancreatic rudiment but none match the complexity of the in utero or even normal physiological environment. Speier et al. recently developed a platform of noninvasive in vivo imaging of pancreatic islets using the anterior chamber of the eye where islets get vascularized, grow and respond to physiological changes. The same methodology was adapted for the study of pancreatic development. E13.0, still undifferentiated rudiments with fluorescent lineage tracing were implanted in the AC of the eye, allowing the longitudinal study of their growth and differentiation. Within 48 h the anlages get vascularized and grow but their mesenchyme displays a selective growth advantage. The resulting imbalance leads to alteration in the differentiation pattern of the progenitors. Reducing the mesenchyme to its bare minimum before implantation allows the restoration of a proper balance and a development that mimics the normal pancreatic development. These groundbreaking observations demonstrate that the anterior chamber of the eye provides a good system for noninvasive in vivo fluorescence imaging of the developing pancreas under the physiology of the host and can have important implications for designing strategies to prevent or reverse the deleterious effects of hyperglycemia on altering β-cell function later in life.

摘要

胎儿环境在改变日后患糖尿病风险方面起着决定性作用。开发新方法以在宿主可控的生理条件下对体内β细胞发育进行无创成像,有助于了解这种环境如何影响β细胞的生长和分化。已经为胰腺原基设计了多种培养模型,但没有一种能与子宫内甚至正常生理环境的复杂性相匹配。斯皮尔等人最近开发了一个利用眼房对胰岛进行无创体内成像的平台,胰岛在眼房中血管化、生长并对生理变化做出反应。同样的方法被应用于胰腺发育的研究。将带有荧光谱系追踪的E13.0期仍未分化的原基植入眼房,从而能够对其生长和分化进行纵向研究。在48小时内,原基血管化并生长,但其间充质显示出选择性生长优势。由此产生的失衡导致祖细胞分化模式改变。在植入前将间充质减少到最低限度可恢复适当的平衡,并实现模拟正常胰腺发育的过程。这些开创性的观察结果表明,眼房为在宿主生理条件下对发育中的胰腺进行无创体内荧光成像提供了一个良好的系统,并且对于设计预防或逆转高血糖在日后生活中改变β细胞功能的有害影响的策略可能具有重要意义。

相似文献

1
Noninvasive in vivo imaging of embryonic β-cell development in the anterior chamber of the eye.
Islets. 2016 Mar 3;8(2):35-47. doi: 10.1080/19382014.2016.1148236.
5
Intraocular imaging of pancreatic islet cell physiology/pathology.
Mol Metab. 2017 May 4;6(9):1002-1009. doi: 10.1016/j.molmet.2017.03.014. eCollection 2017 Sep.
6
Non-invasive in vivo imaging of pancreatic β-cell function and survival - a perspective.
Acta Physiol (Oxf). 2012 Feb;204(2):178-85. doi: 10.1111/j.1748-1716.2011.02301.x. Epub 2011 May 28.
8
An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration.
Dev Biol. 2016 Jan 15;409(2):354-69. doi: 10.1016/j.ydbio.2015.12.003. Epub 2015 Dec 3.
9
Lineage tracing of pancreatic stem cells and beta cell regeneration.
Methods Mol Biol. 2012;933:303-15. doi: 10.1007/978-1-62703-068-7_20.
10
The pancreatic islet as a signaling hub.
Adv Biol Regul. 2013 Jan;53(1):156-63. doi: 10.1016/j.jbior.2012.09.011. Epub 2012 Sep 28.

引用本文的文献

2
Noninvasive intravital high-resolution imaging of pancreatic neuroendocrine tumours.
Sci Rep. 2019 Oct 10;9(1):14636. doi: 10.1038/s41598-019-51093-0.
3
Intraocular imaging of pancreatic islet cell physiology/pathology.
Mol Metab. 2017 May 4;6(9):1002-1009. doi: 10.1016/j.molmet.2017.03.014. eCollection 2017 Sep.

本文引用的文献

2
Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring.
J Clin Invest. 2014 Oct;124(10):4395-410. doi: 10.1172/JCI74237. Epub 2014 Sep 2.
3
Reporter islets in the eye reveal the plasticity of the endocrine pancreas.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20581-6. doi: 10.1073/pnas.1313696110. Epub 2013 Nov 18.
4
Implanted islets in the anterior chamber of the eye are prone to autoimmune attack in a mouse model of diabetes.
Diabetologia. 2013 Oct;56(10):2213-21. doi: 10.1007/s00125-013-3004-z. Epub 2013 Aug 11.
5
Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes.
Cell Mol Life Sci. 2013 May;70(9):1575-95. doi: 10.1007/s00018-013-1297-1. Epub 2013 Mar 6.
7
Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme.
Nature. 2012 Nov 29;491(7426):765-8. doi: 10.1038/nature11463. Epub 2012 Oct 7.
8
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
10
Pancreatic mesenchyme regulates epithelial organogenesis throughout development.
PLoS Biol. 2011 Sep;9(9):e1001143. doi: 10.1371/journal.pbio.1001143. Epub 2011 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验