Suppr超能文献

基于人群的三维基因组结构分析揭示了空间基因组组织的驱动力。

Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.

作者信息

Tjong Harianto, Li Wenyuan, Kalhor Reza, Dai Chao, Hao Shengli, Gong Ke, Zhou Yonggang, Li Haochen, Zhou Xianghong Jasmine, Le Gros Mark A, Larabell Carolyn A, Chen Lin, Alber Frank

机构信息

Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089;

Department of Anatomy, University of California, San Francisco, CA 94148; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94702; National Center for X-Ray Tomography, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94702;

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1663-72. doi: 10.1073/pnas.1512577113. Epub 2016 Mar 7.

Abstract

Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm the presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.

摘要

构象捕获技术(如Hi-C)在全基因组范围内描绘染色质区域之间的物理相互作用。然而,细胞间基因组的结构变异性对解释总体平均的Hi-C数据构成了巨大挑战,特别是对于长程和染色体间的相互作用。在这里,我们提出了一种概率方法,将Hi-C数据解卷积为不同二倍体3D基因组结构的模型群体,这有助于检测可能在单个细胞中同时出现的染色质相互作用。我们的方法纳入了染色体构象的随机性,并允许对替代染色质结构状态进行详细分析。例如,我们预测并通过实验证实了存在大的着丝粒簇,其不同的染色体组成在单个细胞之间有所变化。这些簇的稳定性随其染色体身份有很大差异。我们表明,这些特定于染色体的簇可以在细胞核中整体染色体定位以及稳定特定染色质相互作用方面发挥关键作用。通过明确考虑基因组结构变异性,我们基于群体的方法为揭示塑造空间基因组组织的关键因素的新见解提供了一个重要工具。

相似文献

1
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1663-72. doi: 10.1073/pnas.1512577113. Epub 2016 Mar 7.
2
Producing genome structure populations with the dynamic and automated PGS software.
Nat Protoc. 2018 May;13(5):915-926. doi: 10.1038/nprot.2018.008. Epub 2018 Apr 5.
3
Reorganization of chromosome architecture in replicative cellular senescence.
Sci Adv. 2016 Feb 5;2(2):e1500882. doi: 10.1126/sciadv.1500882. eCollection 2016 Feb.
5
An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
Genome Res. 2016 Dec;26(12):1697-1709. doi: 10.1101/gr.205062.116. Epub 2016 Oct 27.
6
Reconstructing spatial organizations of chromosomes through manifold learning.
Nucleic Acids Res. 2018 May 4;46(8):e50. doi: 10.1093/nar/gky065.
9
Bayesian inference of chromatin structure ensembles from population-averaged contact data.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7824-7830. doi: 10.1073/pnas.1910364117. Epub 2020 Mar 19.
10
De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12126-12131. doi: 10.1073/pnas.1714980114. Epub 2017 Oct 31.

引用本文的文献

1
3D genome organization shapes DNA damage susceptibility to platinum-based drugs.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf315.
2
Nuclear mA modification regulates satellite transcription and chromosome segregation.
Nat Chem Biol. 2025 May 22. doi: 10.1038/s41589-025-01900-9.
4
Advancements and future directions in single-cell Hi-C based 3D chromatin modeling.
Comput Struct Biotechnol J. 2024 Oct 3;23:3549-3558. doi: 10.1016/j.csbj.2024.09.026. eCollection 2024 Dec.
7
Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus.
Nat Commun. 2025 Feb 10;16(1):1485. doi: 10.1038/s41467-024-55582-3.
9
Motif distribution in genomes gives insights into gene clustering and co-regulation.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1178.

本文引用的文献

1
Topology, structures, and energy landscapes of human chromosomes.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6062-7. doi: 10.1073/pnas.1506257112. Epub 2015 Apr 27.
2
Inferential modeling of 3D chromatin structure.
Nucleic Acids Res. 2015 Apr 30;43(8):e54. doi: 10.1093/nar/gkv100. Epub 2015 Feb 17.
3
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.
4
Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes.
Nat Methods. 2015 Jan;12(1):71-8. doi: 10.1038/nmeth.3205. Epub 2014 Dec 1.
5
Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies.
Biophys J. 2014 Oct 21;107(8):1988-1996. doi: 10.1016/j.bpj.2014.09.011.
6
3D genome reconstruction from chromosomal contacts.
Nat Methods. 2014 Nov;11(11):1141-3. doi: 10.1038/nmeth.3104. Epub 2014 Sep 21.
7
A statistical approach for inferring the 3D structure of the genome.
Bioinformatics. 2014 Jun 15;30(12):i26-33. doi: 10.1093/bioinformatics/btu268.
10
High-resolution mapping of the spatial organization of a bacterial chromosome.
Science. 2013 Nov 8;342(6159):731-4. doi: 10.1126/science.1242059. Epub 2013 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验