Tjong Harianto, Li Wenyuan, Kalhor Reza, Dai Chao, Hao Shengli, Gong Ke, Zhou Yonggang, Li Haochen, Zhou Xianghong Jasmine, Le Gros Mark A, Larabell Carolyn A, Chen Lin, Alber Frank
Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089;
Department of Anatomy, University of California, San Francisco, CA 94148; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94702; National Center for X-Ray Tomography, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94702;
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1663-72. doi: 10.1073/pnas.1512577113. Epub 2016 Mar 7.
Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm the presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.
构象捕获技术(如Hi-C)在全基因组范围内描绘染色质区域之间的物理相互作用。然而,细胞间基因组的结构变异性对解释总体平均的Hi-C数据构成了巨大挑战,特别是对于长程和染色体间的相互作用。在这里,我们提出了一种概率方法,将Hi-C数据解卷积为不同二倍体3D基因组结构的模型群体,这有助于检测可能在单个细胞中同时出现的染色质相互作用。我们的方法纳入了染色体构象的随机性,并允许对替代染色质结构状态进行详细分析。例如,我们预测并通过实验证实了存在大的着丝粒簇,其不同的染色体组成在单个细胞之间有所变化。这些簇的稳定性随其染色体身份有很大差异。我们表明,这些特定于染色体的簇可以在细胞核中整体染色体定位以及稳定特定染色质相互作用方面发挥关键作用。通过明确考虑基因组结构变异性,我们基于群体的方法为揭示塑造空间基因组组织的关键因素的新见解提供了一个重要工具。