Suppr超能文献

从头预测人类染色体结构:表观遗传标记模式编码基因组结构。

De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.

机构信息

Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;

Center for Theoretical Biological Physics, Rice University, Houston, TX 77005.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12126-12131. doi: 10.1073/pnas.1714980114. Epub 2017 Oct 31.

Abstract

Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible.

摘要

在细胞核内,基因组折叠成具有细胞类型特征的有组织的结构。在这里,我们表明,这种染色质结构可以使用源自染色质免疫沉淀测序(ChIP-Seq)的表观遗传数据从头预测。我们利用染色体编码染色质结构类型的 1D 序列的想法。这些染色质类型之间的相互作用通过类似于相分离的过程决定染色体的 3D 结构整体。首先,使用神经网络来推断在一个基因座处存在的表观遗传标记与通过 DNA-DNA 接近连接(Hi-C)测量的那些基因座所在的基因组隔室之间的关系,作为 ChIP-Seq 检测。接下来,从这个神经网络推断出的类型被用作染色质组织的能量景观模型(最小染色质模型(MiChroM))的输入,以生成分辨率为 50 千碱基(kb)的 3D 染色体构象的集合。在奇数染色体上对模型(称为与结构集合相关的生物标志物的最大熵基因组注释(MEGABASE))进行训练之后,我们预测偶数染色体的染色质类型序列和随后的 3D 构象集合。我们仅使用 ChIP-Seq 轨迹来预测 Hi-C 图谱,以及使用 3D 荧光原位杂交(FISH)实验测量的距离来验证这些结构集合。这两组实验都支持相分离是分隔的驱动过程的假设。这些发现强烈表明,表观遗传标记模式编码了足够的信息来确定染色体的全局结构,并且整个基因组的从头结构预测可能越来越可行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b16/5699090/e0dc1be060a2/pnas.1714980114fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验