Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Science. 2013 Nov 8;342(6159):731-4. doi: 10.1126/science.1242059. Epub 2013 Oct 24.
Chromosomes must be highly compacted and organized within cells, but how this is achieved in vivo remains poorly understood. We report the use of chromosome conformation capture coupled with deep sequencing (Hi-C) to map the structure of bacterial chromosomes. Analysis of Hi-C data and polymer modeling indicates that the Caulobacter crescentus chromosome consists of multiple, largely independent spatial domains that are probably composed of supercoiled plectonemes arrayed into a bottle brush-like fiber. These domains are stable throughout the cell cycle and are reestablished concomitantly with DNA replication. We provide evidence that domain boundaries are established by highly expressed genes and the formation of plectoneme-free regions, whereas the histone-like protein HU and SMC (structural maintenance of chromosomes) promote short-range compaction and the colinearity of chromosomal arms, respectively. Collectively, our results reveal general principles for the organization and structure of chromosomes in vivo.
染色体在细胞内必须高度压缩和组织,但这种情况在体内是如何实现的仍知之甚少。我们报告了使用染色体构象捕获结合深度测序(Hi-C)来绘制细菌染色体结构的方法。Hi-C 数据分析和聚合物建模表明,新月柄杆菌的染色体由多个、基本上独立的空间域组成,这些空间域可能由超螺旋的螺旋体排列成瓶刷状纤维。这些结构域在整个细胞周期中是稳定的,并与 DNA 复制同时重建。我们提供的证据表明,结构域边界是由高度表达的基因和无螺旋体区域的形成来建立的,而组蛋白样蛋白 HU 和 SMC(染色体结构维持)分别促进短程压缩和染色体臂的共线性。总的来说,我们的结果揭示了体内染色体组织和结构的一般原则。