Statistical Inverse Problems in Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7824-7830. doi: 10.1073/pnas.1910364117. Epub 2020 Mar 19.
Mounting experimental evidence suggests a role for the spatial organization of chromatin in crucial processes of the cell nucleus such as transcription regulation. Chromosome conformation capture techniques allow us to characterize chromatin structure by mapping contacts between chromosomal loci on a genome-wide scale. The most widespread modality is to measure contact frequencies averaged over a population of cells. Single-cell variants exist, but suffer from low contact numbers and have not yet gained the same resolution as population methods. While intriguing biological insights have already been garnered from ensemble-averaged data, information about three-dimensional (3D) genome organization in the underlying individual cells remains largely obscured because the contact maps show only an average over a huge population of cells. Moreover, computational methods for structure modeling of chromatin have mostly focused on fitting a single consensus structure, thereby ignoring any cell-to-cell variability in the model itself. Here, we propose a fully Bayesian method to infer ensembles of chromatin structures and to determine the optimal number of states in a principled, objective way. We illustrate our approach on simulated data and compute multistate models of chromatin from chromosome conformation capture carbon copy (5C) data. Comparison with independent data suggests that the inferred ensembles represent the underlying sample population faithfully. Harnessing the rich information contained in multistate models, we investigate cell-to-cell variability of chromatin organization into topologically associating domains, thus highlighting the ability of our approach to deliver insights into chromatin organization of great biological relevance.
越来越多的实验证据表明,染色质的空间组织在细胞核的关键过程中起着重要作用,如转录调控。染色体构象捕获技术使我们能够通过在全基因组范围内绘制染色体基因座之间的接触来描述染色质结构。最广泛的方法是测量细胞群体中平均的接触频率。虽然已经存在单细胞变体,但它们受到接触数量低的限制,并且尚未获得与群体方法相同的分辨率。虽然从整体平均值数据中已经获得了引人入胜的生物学见解,但关于基础单个细胞中三维(3D)基因组组织的信息仍然很大程度上被掩盖了,因为接触图谱仅显示了细胞群体的平均值。此外,染色质结构建模的计算方法主要集中在拟合单个共识结构上,从而忽略了模型本身中的任何细胞间变异性。在这里,我们提出了一种完全贝叶斯方法来推断染色质结构的集合,并以一种有原则的、客观的方式确定状态的最佳数量。我们在模拟数据上进行了说明,并从染色体构象捕获碳拷贝(5C)数据中计算出多状态的染色质模型。与独立数据的比较表明,推断出的集合忠实地代表了基础样本群体。利用多状态模型中包含的丰富信息,我们研究了染色质组织的细胞间变异性到拓扑关联域,从而突出了我们的方法能够洞察具有重要生物学相关性的染色质组织的能力。