Brivio Federico, Caetano Clovis, Walsh Aron
Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom.
Universidade Federal da Fronteira Sul , Realeza Paraná 85770-000, Brazil.
J Phys Chem Lett. 2016 Mar 17;7(6):1083-7. doi: 10.1021/acs.jpclett.6b00226. Epub 2016 Mar 9.
The formation of solid-solutions of iodide, bromide, and chloride provides the means to control the structure, band gap, and stability of hybrid halide perovskite semiconductors for photovoltaic applications. We report a computational investigation of the CH3NH3PbI3/CH3NH3PbBr3 alloy from density functional theory with a thermodynamic analysis performed within the generalized quasi-chemical approximation. We construct the phase diagram and identify a large miscibility gap, with a critical temperature of 343 K. The observed photoinstability in some mixed-halide solar cells is explained by the thermodynamics of alloy formation, where an initially homogeneous solution is subject to spinodal decomposition with I and Br-rich phases, which is further complicated by a wide metastable region defined by the binodal line.
碘化物、溴化物和氯化物固溶体的形成提供了控制用于光伏应用的混合卤化物钙钛矿半导体的结构、带隙和稳定性的方法。我们报告了基于密度泛函理论对CH3NH3PbI3/CH3NH3PbBr3合金进行的计算研究,并在广义准化学近似内进行了热力学分析。我们构建了相图并确定了一个大的混溶间隙,临界温度为343K。一些混合卤化物太阳能电池中观察到的光不稳定性可以通过合金形成的热力学来解释,其中初始均匀的溶液会经历旋节线分解形成富含I和Br的相,而由双节线定义的宽亚稳区进一步使情况变得复杂。