Suppr超能文献

基于大规模药物诱导转录特征的癌症治疗药物重新定位

Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures.

作者信息

Lee Haeseung, Kang Seungmin, Kim Wankyu

机构信息

Ewha Research Center for Systems Biology, Division of Molecular & Life Sciences, Ewha Womans University, Seoul, Korea.

出版信息

PLoS One. 2016 Mar 8;11(3):e0150460. doi: 10.1371/journal.pone.0150460. eCollection 2016.

Abstract

An in silico chemical genomics approach is developed to predict drug repositioning (DR) candidates for three types of cancer: glioblastoma, lung cancer, and breast cancer. It is based on a recent large-scale dataset of ~20,000 drug-induced expression profiles in multiple cancer cell lines, which provides i) a global impact of transcriptional perturbation of both known targets and unknown off-targets, and ii) rich information on drug's mode-of-action. First, the drug-induced expression profile is shown more effective than other information, such as the drug structure or known target, using multiple HTS datasets as unbiased benchmarks. Particularly, the utility of our method was robustly demonstrated in identifying novel DR candidates. Second, we predicted 14 high-scoring DR candidates solely based on expression signatures. Eight of the fourteen drugs showed significant anti-proliferative activity against glioblastoma; i.e., ivermectin, trifluridine, astemizole, amlodipine, maprotiline, apomorphine, mometasone, and nortriptyline. Our DR score strongly correlated with that of cell-based experimental results; the top seven DR candidates were positive, corresponding to an approximately 20-fold enrichment compared with conventional HTS. Despite diverse original indications and known targets, the perturbed pathways of active DR candidates show five distinct patterns that form tight clusters together with one or more known cancer drugs, suggesting common transcriptome-level mechanisms of anti-proliferative activity.

摘要

开发了一种计算机化学基因组学方法,以预测三种癌症(胶质母细胞瘤、肺癌和乳腺癌)的药物重新定位(DR)候选药物。它基于最近一个包含约20,000个药物诱导的多个癌细胞系表达谱的大规模数据集,该数据集提供了:i)已知靶点和未知脱靶转录扰动的全局影响,以及ii)关于药物作用模式的丰富信息。首先,使用多个高通量筛选(HTS)数据集作为无偏基准,药物诱导的表达谱比其他信息(如药物结构或已知靶点)更有效。特别是,我们方法的实用性在识别新型DR候选药物方面得到了有力证明。其次,我们仅基于表达特征预测了14个高分DR候选药物。这14种药物中的8种对胶质母细胞瘤显示出显著的抗增殖活性;即伊维菌素、曲氟尿苷、阿司咪唑、氨氯地平、马普替林、阿扑吗啡、莫米松和去甲替林。我们的DR评分与基于细胞的实验结果密切相关;前七个DR候选药物为阳性,与传统HTS相比,富集倍数约为20倍。尽管活性DR候选药物的原始适应症和已知靶点各不相同,但它们的扰动途径显示出五种不同的模式,这些模式与一种或多种已知癌症药物一起形成紧密的簇,表明存在抗增殖活性的共同转录组水平机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7bd/4783079/7be6ea43446f/pone.0150460.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验