Suppr超能文献

DCDB 2.0:药物组合数据库的重大更新。

DCDB 2.0: a major update of the drug combination database.

作者信息

Liu Yanbin, Wei Qiang, Yu Guisheng, Gai Wanxia, Li Yongquan, Chen Xin

机构信息

Department of Bioinformatics, College of Life Sciences and Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China Department of Bioinformatics, College of Life Sciences and Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China.

Department of Bioinformatics, College of Life Sciences and Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China.

出版信息

Database (Oxford). 2014 Dec 23;2014:bau124. doi: 10.1093/database/bau124. Print 2014.

Abstract

Experience in clinical practice and research in systems pharmacology suggested the limitations of the current one-drug-one-target paradigm in new drug discovery. Single-target drugs may not always produce desired physiological effects on the entire biological system, even if they have successfully regulated the activities of their designated targets. On the other hand, multicomponent therapy, in which two or more agents simultaneously interact with multiple targets, has attracted growing attention. Many drug combinations consisting of multiple agents have already entered clinical practice, especially in treating complex and refractory diseases. Drug combination database (DCDB), launched in 2010, is the first available database that collects and organizes information on drug combinations, with an aim to facilitate systems-oriented new drug discovery. Here, we report the second major release of DCDB (Version 2.0), which includes 866 new drug combinations (1363 in total), consisting of 904 distinctive components. These drug combinations are curated from ∼140,000 clinical studies and the food and drug administration (FDA) electronic orange book. In this update, DCDB collects 237 unsuccessful drug combinations, which may provide a contrast for systematic discovery of the patterns in successful drug combinations. Database URL: http://www.cls.zju.edu.cn/dcdb/

摘要

临床实践经验以及系统药理学研究表明,当前新药研发中“一药一靶”模式存在局限性。单靶点药物即便成功调节了其指定靶点的活性,也未必总能对整个生物系统产生预期的生理效应。另一方面,由两种或更多药物同时作用于多个靶点的多组分疗法日益受到关注。许多由多种药物组成的联合用药方案已应用于临床实践,尤其是在治疗复杂难治性疾病方面。药物组合数据库(DCDB)于2010年推出,是首个收集和整理药物组合信息的数据库,旨在促进面向系统的新药研发。在此,我们报告DCDB的第二次重大更新版本(2.0版),其中包含866种新的药物组合(共计1363种),由904种不同成分组成。这些药物组合是从约140,000项临床研究以及美国食品药品监督管理局(FDA)的电子橙皮书中整理而来。在此次更新中,DCDB收录了237种未成功的药物组合,这可能为系统发现成功药物组合的模式提供对照。数据库网址:http://www.cls.zju.edu.cn/dcdb/

相似文献

1
DCDB 2.0: a major update of the drug combination database.DCDB 2.0:药物组合数据库的重大更新。
Database (Oxford). 2014 Dec 23;2014:bau124. doi: 10.1093/database/bau124. Print 2014.
2
DCDB: drug combination database.DCDB:药物组合数据库。
Bioinformatics. 2010 Feb 15;26(4):587-8. doi: 10.1093/bioinformatics/btp697. Epub 2009 Dec 23.
4
TarNet: An Evidence-Based Database for Natural Medicine Research.TarNet:一个基于证据的天然药物研究数据库。
PLoS One. 2016 Jun 23;11(6):e0157222. doi: 10.1371/journal.pone.0157222. eCollection 2016.
7
TRMP: a database of therapeutically relevant multiple pathways.TRMP:一个治疗相关多种途径的数据库。
Bioinformatics. 2004 Sep 22;20(14):2236-41. doi: 10.1093/bioinformatics/bth233. Epub 2004 Apr 1.
8
9
GMEnzy: a genetically modified enzybiotic database.GMEnzy:一个转基因酶生物数据库。
PLoS One. 2014 Aug 1;9(8):e103687. doi: 10.1371/journal.pone.0103687. eCollection 2014.

引用本文的文献

本文引用的文献

1
PubChem applications in drug discovery: a bibliometric analysis.《PubChem在药物发现中的应用:文献计量分析》
Drug Discov Today. 2014 Nov;19(11):1751-1756. doi: 10.1016/j.drudis.2014.08.008. Epub 2014 Aug 27.
4
The Reactome pathway knowledgebase.Reactome 通路知识库。
Nucleic Acids Res. 2014 Jan;42(Database issue):D472-7. doi: 10.1093/nar/gkt1102. Epub 2013 Nov 15.
6
Data, information, knowledge and principle: back to metabolism in KEGG.数据、信息、知识和原理:回到 KEGG 的代谢途径中。
Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205. doi: 10.1093/nar/gkt1076. Epub 2013 Nov 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验