Suppr超能文献

通过深度学习实现受激拉曼散射显微镜图像的去噪

Denoising of stimulated Raman scattering microscopy images via deep learning.

作者信息

Manifold Bryce, Thomas Elena, Francis Andrew T, Hill Andrew H, Fu Dan

机构信息

Department of Chemistry, University of Washington, Seattle, WA 98195, USA.

出版信息

Biomed Opt Express. 2019 Jul 10;10(8):3860-3874. doi: 10.1364/BOE.10.003860. eCollection 2019 Aug 1.

Abstract

Stimulated Raman scattering (SRS) microscopy is a label-free quantitative chemical imaging technique that has demonstrated great utility in biomedical imaging applications ranging from real-time stain-free histopathology to live animal imaging. However, similar to many other nonlinear optical imaging techniques, SRS images often suffer from low signal to noise ratio (SNR) due to absorption and scattering of light in tissue as well as the limitation in applicable power to minimize photodamage. We present the use of a deep learning algorithm to significantly improve the SNR of SRS images. Our algorithm is based on a U-Net convolutional neural network (CNN) and significantly outperforms existing denoising algorithms. More importantly, we demonstrate that the trained denoising algorithm is applicable to images acquired at different zoom, imaging power, imaging depth, and imaging geometries that are not included in the training. Our results identify deep learning as a powerful denoising tool for biomedical imaging at large, with potential towards applications, where imaging parameters are often variable and ground-truth images are not available to create a fully supervised learning training set.

摘要

受激拉曼散射(SRS)显微镜是一种无标记的定量化学成像技术,已在从实时无染色组织病理学到活体动物成像等生物医学成像应用中展现出巨大效用。然而,与许多其他非线性光学成像技术类似,由于组织中光的吸收和散射以及为使光损伤最小化而在适用功率方面的限制,SRS图像常常信噪比(SNR)较低。我们展示了使用深度学习算法来显著提高SRS图像的信噪比。我们的算法基于U-Net卷积神经网络(CNN),并且显著优于现有的去噪算法。更重要的是,我们证明经过训练的去噪算法适用于在不同缩放比例、成像功率、成像深度和成像几何条件下采集的图像,这些条件并不包含在训练集中。我们的结果表明深度学习总体上是生物医学成像的一种强大去噪工具,对于成像参数常常可变且没有真实图像来创建完全监督学习训练集的应用具有潜在价值。

相似文献

1
Denoising of stimulated Raman scattering microscopy images via deep learning.通过深度学习实现受激拉曼散射显微镜图像的去噪
Biomed Opt Express. 2019 Jul 10;10(8):3860-3874. doi: 10.1364/BOE.10.003860. eCollection 2019 Aug 1.
10
Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization.通过总变分最小化去噪受激拉曼光谱图像
J Phys Chem C Nanomater Interfaces. 2015 Aug 20;119(33):19397-19403. doi: 10.1021/acs.jpcc.5b06980. Epub 2015 Jul 29.

引用本文的文献

5
Super-resolution of biomedical volumes with 2D supervision.基于二维监督的生物医学体积超分辨率技术。
Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6966-6977. doi: 10.1109/cvprw63382.2024.00690. Epub 2024 Sep 27.
8
DLSIA: Deep Learning for Scientific Image Analysis.DLSIA:用于科学图像分析的深度学习
J Appl Crystallogr. 2024 Mar 21;57(Pt 2):392-402. doi: 10.1107/S1600576724001390. eCollection 2024 Apr 1.
9
Measuring Drug Response with Single-Cell Growth Rate Quantification.用单细胞生长速率定量测量药物反应。
Anal Chem. 2023 Dec 12;95(49):18114-18121. doi: 10.1021/acs.analchem.3c03434. Epub 2023 Nov 28.

本文引用的文献

8
Optical imaging of metabolic dynamics in animals.动物代谢动力学的光学成像。
Nat Commun. 2018 Aug 6;9(1):2995. doi: 10.1038/s41467-018-05401-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验