Xia Dunzhu, Hu Yiwei, Ni Peizhen
Key Laboratory of Micro-inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.
Sensors (Basel). 2016 Mar 4;16(3):321. doi: 10.3390/s16030321.
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm.
在这项工作中,我们研究了将自适应控制算法应用于微机电系统(MEMS)陀螺仪的可能性。通过将陀螺仪的工作条件与参考模型进行比较,自适应控制方法可以为系统提供关键参数的在线估计和适当的控制策略。参考模型中的数字二阶振荡器被两个锁相环(PLL)取代,以实现更稳定的幅度和频率控制。修改自适应律以满足耦合刚度和耦合阻尼系数不相等的条件。我们的工作考虑了陀螺仪系统的旋转模式,并在数字化系统中增加了一个旋转消除部分。在硬件平台上实现该算法之前,进行了不同的仿真,以确保算法能够满足角速率传感器的要求,并对一些关键的自适应律系数进行了优化。分别检测和抑制耦合分量,并应用李雅普诺夫准则证明系统的稳定性。改进后的自适应控制算法在一组数字化陀螺仪系统中得到验证,控制系统在数字域中实现,采用了现场可编程门阵列(FPGA)。测量关键结构参数并与估计结果进行比较,验证了该算法在该设置下是可行的。使用额外的陀螺仪进行重复实验,以证明该算法的通用性。