Suppr超能文献

ReAsH作为细胞内蛋白质动力学的定量探针。

ReAsH as a Quantitative Probe of In-Cell Protein Dynamics.

作者信息

Gelman Hannah, Wirth Anna Jean, Gruebele Martin

机构信息

Department of Physics, ‡Department of Chemistry, and §Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.

出版信息

Biochemistry. 2016 Apr 5;55(13):1968-76. doi: 10.1021/acs.biochem.5b01336. Epub 2016 Mar 18.

Abstract

The tetracysteine (tc) tag/biarsenical dye system (FlAsH or ReAsH) promises to combine the flexibility of fluorescent protein tags with the small size of dye labels, allowing in-cell study of target proteins that are perturbed by large protein tags. Quantitative thermodynamic and kinetic studies in-cell using FlAsH and ReAsH have been hampered by methodological complexities presented by the fluorescence properties of the tag-dye complex probed by either Förster resonance energy transfer (FRET) or direct excitation. We label the model protein phosphoglycerate kinase (PGK) with AcGFP1 and ReAsH for direct comparison with AcGFP1/mCherry-labeled PGK. We find that fast relaxation imaging (FReI), combining millisecond temperature jump kinetics with fluorescence microscopy detection, circumvents many of the difficulties encountered working with the ReAsH system, allowing us to obtain quantitative FRET measurements of protein stability and kinetics both in vitro and in cells. We also demonstrate the to us surprising result that fluorescence from directly excited, unburied ReAsH at the C-terminus of the model protein also reports on folding in vitro and in cells. Comparing the ReAsH-labeled protein to a construct labeled with two fluorescent protein tags allows us to evaluate how a bulkier protein tag affects protein dynamics in cells and in vitro. We find that the average folding rate in the cell is closer to the in vitro rate with the smaller tag, highlighting the effect of tags on quantitative in-cell measurements.

摘要

四半胱氨酸(tc)标签/双砷染料系统(FlAsH或ReAsH)有望将荧光蛋白标签的灵活性与染料标记的小尺寸相结合,从而能够对因大蛋白标签而受到干扰的靶蛋白进行细胞内研究。使用FlAsH和ReAsH在细胞内进行的定量热力学和动力学研究一直受到Förster共振能量转移(FRET)或直接激发探测的标签-染料复合物荧光特性所带来的方法复杂性的阻碍。我们用AcGFP1和ReAsH标记模型蛋白磷酸甘油酸激酶(PGK),以便与AcGFP1/mCherry标记的PGK进行直接比较。我们发现,将毫秒级温度跳跃动力学与荧光显微镜检测相结合的快速弛豫成像(FReI)克服了使用ReAsH系统时遇到的许多困难,使我们能够在体外和细胞内获得蛋白质稳定性和动力学的定量FRET测量结果。我们还证明了一个令我们惊讶的结果,即模型蛋白C末端直接激发、未掩埋的ReAsH发出的荧光也能反映体外和细胞内的折叠情况。将ReAsH标记的蛋白与用两个荧光蛋白标签标记的构建体进行比较,使我们能够评估更大的蛋白标签如何影响细胞内和体外的蛋白质动力学。我们发现,细胞内的平均折叠速率更接近使用较小标签时的体外速率,突出了标签对细胞内定量测量的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验