IEEE Trans Pattern Anal Mach Intell. 2016 Apr;38(4):759-71. doi: 10.1109/TPAMI.2015.2465910.
A canonical problem in computer vision is category recognition (e.g., find all instances of human faces, cars etc., in an image). Typically, the input for training a binary classifier is a relatively small sample of positive examples, and a huge sample of negative examples, which can be very diverse, consisting of images from a large number of categories. The difficulty of the problem sharply increases with the dimension and size of the negative example set. We propose to alleviate this problem by applying a "hybrid" classifier, which replaces the negative samples by a prior, and then finds a hyperplane which separates the positive samples from this prior. The method is extended to kernel space and to an ensemble-based approach. The resulting binary classifiers achieve an identical or better classification rate than SVM, while requiring far smaller memory and lower computational complexity to train and apply.
计算机视觉中的一个典型问题是类别识别(例如,在图像中找到所有的人脸、汽车等实例)。通常,用于训练二进制分类器的输入是相对较小的正例样本和大量的负例样本,这些负例样本可以非常多样化,包括来自多个类别的图像。随着负例样本集的维度和大小的增加,问题的难度会急剧增加。我们提出通过应用“混合”分类器来缓解这个问题,该分类器用先验替换负例样本,然后找到一个超平面,将正例样本与该先验分开。该方法扩展到核空间和基于集成的方法。所得到的二进制分类器实现了与 SVM 相同或更好的分类率,同时在训练和应用时需要更小的内存和更低的计算复杂度。