Suppr超能文献

在ibmqx2和ibmq_16_melbourne上使用内积实现类似汉明距离的基因组量子分类器。

Implementation of a Hamming distance-like genomic quantum classifier using inner products on ibmqx2 and ibmq_16_melbourne.

作者信息

Kathuria Kunal, Ratan Aakrosh, McConnell Michael, Bekiranov Stefan

机构信息

Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA USA.

Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA.

出版信息

Quantum Mach Intell. 2020;2(1):1-26. doi: 10.1007/s42484-020-00017-7. Epub 2020 Jul 17.

Abstract

Motivated by the problem of classifying individuals with a disease versus controls using a functional genomic attribute as input, we present relatively efficient general purpose inner product-based kernel classifiers to classify the test as a normal or disease sample. We encode each training sample as a string of 1 s (presence) and 0 s (absence) representing the attribute's existence across ordered physical blocks of the subdivided genome. Having binary-valued features allows for highly efficient data encoding in the computational basis for classifiers relying on binary operations. Given that a natural distance between binary strings is Hamming distance, which shares properties with bit-string inner products, our two classifiers apply different inner product measures for classification. The active inner product (AIP) is a direct dot product-based classifier whereas the symmetric inner product (SIP) classifies upon scoring correspondingly matching genomic attributes. SIP is a strongly Hamming distance-based classifier generally applicable to binary attribute-matching problems whereas AIP has general applications as a simple dot product-based classifier. The classifiers implement an inner product between = 2 dimension test and train vectors using Fredkin gates while the training sets are respectively entangled with the class-label qubit, without use of an ancilla. Moreover, each training class can be composed of an arbitrary number of samples that can be classically summed into one input string to effectively execute all test-train inner products simultaneously. Thus, our circuits require the same number of qubits for any number of training samples and are in gate complexity after the states are prepared. Our classifiers were implemented on ibmqx2 (IBM-Q-team 2019b) and ibmq_16_melbourne (IBM-Q-team 2019a). The latter allowed encoding of 64 training features across the genome.

摘要

受使用功能基因组属性作为输入来区分患有疾病的个体与对照个体这一问题的驱动,我们提出了相对高效的基于内积的通用内核分类器,以将测试样本分类为正常样本或疾病样本。我们将每个训练样本编码为一个由1(存在)和0(不存在)组成的字符串,该字符串表示属性在细分基因组的有序物理块中的存在情况。具有二进制值特征使得依赖于二进制运算的分类器在计算基础上能够进行高效的数据编码。鉴于二进制字符串之间的自然距离是汉明距离,它与位串内积具有相同的性质,我们的两个分类器应用不同的内积度量进行分类。主动内积(AIP)是一种基于直接点积的分类器,而对称内积(SIP)则根据相应匹配的基因组属性得分进行分类。SIP是一种基于强汉明距离的分类器,通常适用于二进制属性匹配问题,而AIP作为一种基于简单点积的分类器具有广泛的应用。分类器使用弗雷德金门在二维测试向量和训练向量之间实现内积,同时训练集分别与类标签量子比特纠缠,无需使用辅助量子比特。此外,每个训练类可以由任意数量的样本组成,这些样本可以经典地求和为一个输入字符串,以有效地同时执行所有测试-训练内积。因此,对于任意数量的训练样本,我们的电路需要相同数量的量子比特,并且在状态准备好之后具有门复杂度。我们的分类器在ibmqx2(IBM-Q团队,2019b)和ibmq_16_melbourne(IBM-Q团队,2019a)上实现。后者允许对整个基因组的64个训练特征进行编码。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验