Katsigiannis Stamos, Zacharia Eleni, Maroulis Dimitris
IEEE J Biomed Health Inform. 2017 May;21(3):867-874. doi: 10.1109/JBHI.2016.2537922. Epub 2016 Mar 3.
Complementary DNA (cDNA) microarray is a powerful tool for simultaneously studying the expression level of thousands of genes. Nevertheless, the analysis of microarray images remains an arduous and challenging task due to the poor quality of the images that often suffer from noise, artifacts, and uneven background. In this study, the MIGS-GPU [Microarray Image Gridding and Segmentation on Graphics Processing Unit (GPU)] software for gridding and segmenting microarray images is presented. MIGS-GPU's computations are performed on the GPU by means of the compute unified device architecture (CUDA) in order to achieve fast performance and increase the utilization of available system resources. Evaluation on both real and synthetic cDNA microarray images showed that MIGS-GPU provides better performance than state-of-the-art alternatives, while the proposed GPU implementation achieves significantly lower computational times compared to the respective CPU approaches. Consequently, MIGS-GPU can be an advantageous and useful tool for biomedical laboratories, offering a user-friendly interface that requires minimum input in order to run.
互补DNA(cDNA)微阵列是一种用于同时研究数千个基因表达水平的强大工具。然而,由于微阵列图像质量较差,常常存在噪声、伪影和背景不均匀等问题,对微阵列图像的分析仍然是一项艰巨且具有挑战性的任务。在本研究中,提出了用于微阵列图像网格化和分割的MIGS-GPU[图形处理单元(GPU)上的微阵列图像网格化和分割]软件。MIGS-GPU的计算通过计算统一设备架构(CUDA)在GPU上执行,以实现快速性能并提高可用系统资源的利用率。对真实和合成cDNA微阵列图像的评估表明,MIGS-GPU比现有最佳替代方案具有更好的性能,同时与相应的CPU方法相比,所提出的GPU实现显著降低了计算时间。因此,MIGS-GPU可以成为生物医学实验室的一个有利且有用的工具,提供一个用户友好的界面,运行时所需的输入最少。