Duchesne Louis, Houle Daniel, Ouimet Rock, Lambert Marie-Claude, Logan Travis
Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs , Québec , Canada.
Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs, Québec, Canada; Consortium sur la climatologie régionale et l'adaptation aux changements climatiques (Ouranos), Montréal, Canada.
PeerJ. 2016 Mar 3;4:e1767. doi: 10.7717/peerj.1767. eCollection 2016.
Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha(-1), which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec's managed forests MSAC may increase by 20% by 2041-2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec's forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests.
森林生态系统的生物固碳在温室气体净平衡中起着重要作用,是人为二氧化碳排放的碳汇。然而,对于控制温带和北方森林碳储量的非生物环境因素(包括气候),以及它们对气候变化的潜在响应,我们了解得相对较少。基于一组超过94000个森林清查地块以及从航空照片解读出的大量森林属性空间数据,我们绘制了加拿大魁北克省435000平方公里人工林中地上活生物量当前碳储量的高分辨率地图(约375米)。我们的分析得出,生产性林地的面积加权平均地上碳储量为37.6 Mg ha(-1),低于类似环境下通常报道的值。我们开发了能够预测年均温度、年降水量和土壤物理环境对最大林分水平地上碳储量(MSAC)影响的模型。然后利用这些模型预测气候变化下未来的MSAC。我们的结果表明,MSAC与年均温度和降水量显著相关,或者与这些变量的相互作用显著相关,并表明魁北克省的人工林MSAC可能因气候变化在2041 - 2070年增加20%。然而,除了气候变化,自然干扰状况和森林管理实践在很大程度上仍将驱动景观尺度上未来的碳储量。总体而言,我们的结果能够准确核算魁北克森林地上活树生物量中的碳储量,并有助于更好地理解气候变化与温带和北方森林碳储存之间可能的反馈关系。