Kodera Masahito, Ishiga Shin, Tsuji Tomokazu, Sakurai Katsutoshi, Hitomi Yutaka, Shiota Yoshihito, Sajith P K, Yoshizawa Kazunari, Mieda Kaoru, Ogura Takashi
Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan.
Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
Chemistry. 2016 Apr 18;22(17):5924-36. doi: 10.1002/chem.201600048. Epub 2016 Mar 10.
Recently, it was shown that μ-oxo-μ-peroxodiiron(III) is converted to high-spin μ-oxodioxodiiron(IV) through O-O bond scission. Herein, the formation and high reactivity of the anti-dioxo form of high-spin μ-oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic-absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ-oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is toluene<ethylbenzene≈cumene<trans-β-methylstyrene. The rate constants increased proportionally to the substrate concentration at low substrate concentration. At high substrate concentration, however, the rate constants converge to the same value regardless of the kind of substrate. This is explained by a two-step mechanism in which anti-μ-oxodioxodiiron(IV) is formed by syn-to-anti transformation of the syn-dioxo form and reacts with substrates as the oxidant. The anti-dioxo form is 620 times more reactive in the C-H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8 ]toluene is 95 at -30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2 O2 .
最近的研究表明,μ-氧代-μ-过氧二铁(III)通过O-O键断裂转化为高自旋的μ-氧代二氧二铁(IV)。在此,基于共振拉曼光谱和电子吸收光谱变化、详细的动力学研究、密度泛函理论(DFT)计算、活化参数、动力学同位素效应(KIE)以及烷烃的催化氧化,证明了高自旋μ-氧代二氧二铁(IV)的反二氧形式作为活性氧化剂的形成及其高反应活性。添加底物后,μ-氧代二氧二铁(IV)的衰变大大加速。底物的反应活性顺序为甲苯<乙苯≈异丙苯<反式-β-甲基苯乙烯。在低底物浓度下,速率常数与底物浓度成正比增加。然而,在高底物浓度下,无论底物种类如何,速率常数都收敛到相同的值。这可以用两步机理来解释,即反-μ-氧代二氧二铁(IV)通过顺式二氧形式的顺-反转化形成,并作为氧化剂与底物反应。反二氧形式在乙苯的C-H键裂解中的反应活性比迄今为止报道的最具反应活性的二铁体系高620倍。在-30°C下,与甲苯/[D8]甲苯反应的KIE为95,这是迄今为止二铁体系中最大的。目前的二铁配合物能有效地催化H2O2对各种烷烃的氧化反应。