Faculty of Science & Arts, Chemistry Department, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey; Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey.
Faculty of Science & Arts, Chemistry Department, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey.
Colloids Surf B Biointerfaces. 2016 Jun 1;142:334-343. doi: 10.1016/j.colsurfb.2016.03.006. Epub 2016 Mar 4.
From a natural polyphenol, Tannic acid (TA), poly(TA) nanoparticles were readily prepared using a single step approach with three different biocompatible crosslinkers; trimethylolpropane triglycidyl ether (TMPGDE), poly(ethylene glycol) diglycidyl ether (PEGGE), and trisodium trimetaphosphate (STMP). P(TA) particles were obtained with controllable diameters between 400 to 800nm with -25mV surface charge. The effect of synthesis conditions, such as the emulsion medium, pH values of TA solution, and the type of crosslinker, on the shape, size, dispersity, yield, and degradability of poly(Tannic Acid) (p(TA)) nanoparticles was systematically investigated. The hydrolytic degradation amount in physiological pH conditions of 5.4, 7.4, and 9.0 at 37.5°C were found to be in the order TMPGDE<PEGGE<STMP. Furthermore, the degradation amounts of TA from p(TA) nanoparticles can be controlled by the appropriate choice of crosslinker, and the pH of releasing media. The highest TA release, 600mg/g, was obtained for TMPGDE-crosslinked p(TA) particles in intestinal pH conditions (pH 9) over 3 days; whereas, a slow and linear TA release profile over almost 30 days was obtained by using PEGGE-crosslinked p(TA) in body fluid pH conditions (pH 7.4). The total phenol content of p(TA) particles was calculated as 70±1μgmL(-1) for 170μgmL(-1) p(TA), and the trolox equivalent antioxidant capacity was found to be 2027±104mM trolox equivalent g(-1). Moreover, p(TA) nanoparticles demonstrated strong antimicrobial effects against common bacterial strains. More interestingly, with a higher concentration of p(TA) particles, higher blood clotting indices were obtained.
从天然多酚单宁酸(TA)出发,通过一步法使用三种不同的生物相容性交联剂:三羟甲基丙烷三缩水甘油醚(TMPGDE)、聚乙二醇二缩水甘油醚(PEGGE)和三磷酸三钠(STMP),很容易制备聚(TA)纳米粒子。所得到的 P(TA) 粒子具有 400 至 800nm 的可控直径和-25mV 的表面电荷。系统地研究了合成条件(如乳液介质、TA 溶液的 pH 值和交联剂的类型)对聚(单宁酸)(p(TA))纳米粒子的形状、尺寸、分散性、产率和可降解性的影响。在 37.5°C 下,在生理 pH 值为 5.4、7.4 和 9.0 的条件下,水解降解量的顺序为 TMPGDE<PEGGE<STMP。此外,通过适当选择交联剂和释放介质的 pH 值,可以控制 TA 从 p(TA)纳米粒子中的释放量。在肠道 pH 条件(pH 9)下,使用 TMPGDE 交联的 p(TA) 颗粒可获得最高的 TA 释放量,为 600mg/g,在 3 天内;而在体液 pH 条件(pH 7.4)下,使用 PEGGE 交联的 p(TA)则可获得缓慢且线性的 TA 释放曲线,持续近 30 天。p(TA) 颗粒的总酚含量计算为 170μg/mL p(TA)时为 70±1μg/mL,trolox 当量抗氧化能力为 2027±104mM trolox 当量/g。此外,p(TA) 纳米粒子对常见细菌菌株表现出强烈的抗菌作用。更有趣的是,随着 p(TA) 颗粒浓度的增加,得到了更高的凝血指数。