Suppr超能文献

利用全球定位系统遥测和活动数据检测灰熊对有蹄类动物尸体的利用情况。

Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data.

作者信息

Ebinger Michael R, Haroldson Mark A, van Manen Frank T, Costello Cecily M, Bjornlie Daniel D, Thompson Daniel J, Gunther Kerry A, Fortin Jennifer K, Teisberg Justin E, Pils Shannon R, White P J, Cain Steven L, Cross Paul C

机构信息

College of Forestry and Conservation, University of Montana, University Hall, Room 309, Missoula, MT, 59812, USA.

Interagency Grizzly Bear Study Team, Northern Rocky Mountain Science Center, US Geological Survey, 2327 University Way, Suite 2, Bozeman, MT, 59715, USA.

出版信息

Oecologia. 2016 Jul;181(3):695-708. doi: 10.1007/s00442-016-3594-5. Epub 2016 Mar 14.

Abstract

Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

摘要

全球定位系统(GPS)野生动物项圈彻底改变了野生动物研究。对自由放养食肉动物的捕食研究尤其受益于位置聚类算法的应用,以确定捕食事件发生的时间和地点。这些研究改变了我们对大型食肉动物行为的理解,但成果主要集中在专性食肉动物上。兼性食肉动物,如灰熊/棕熊(棕熊),表现出多种行为,这些行为可能导致GPS聚类的形成。我们将聚类技术与对灰熊GPS位置的实地调查(n = 732次实地调查;2004 - 2011年)相结合,产生了174个GPS聚类,其中记录的行为被分为五类(大型生物量尸体、小型生物量尸体、陈旧尸体、非尸体活动和休息)。我们使用多项逻辑回归来预测聚类属于每个类别的概率。两种交叉验证方法——排除单个聚类或排除单个熊——表明,正确预测熊访问大型生物量尸体的概率为78 - 88%,而假阳性率为18 - 24%。作为一个案例研究,我们将我们的预测模型应用于大黄石生态系统(2002 - 2011年)266个熊年的GPS数据集,并研究了秋季暴食期(9月至10月)尸体访问的趋势。我们识别出1997个空间GPS聚类,其中347个被预测为大型生物量尸体。我们使用聚类数据开发了一个尸体访问指数,该指数每年都有所变化,但在研究期间增加了一倍多。我们的研究证明了识别与兼性食肉动物尸体访问相关的GPS聚类的有效性和实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验