Ryder Matthew R, Civalleri Bartolomeo, Tan Jin-Chong
Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, via Pietro Giuria 7, 10125 Torino, Italy.
Phys Chem Chem Phys. 2016 Apr 7;18(13):9079-87. doi: 10.1039/c6cp00864j.
Understanding the mechanical properties of metal-organic frameworks (MOFs) is crucial not only to yield robust practical applications, but also to advance fundamental research underpinning the flexibility of a myriad of open-framework chemical compounds. Herein we present one of the most comprehensive structural analyses yet on MOF-mechanics: elucidating the complex elastic response of an isoreticular series of topical Zr-based MOFs, explaining all the important mechanical properties, and identifying major trends arising from systematic organic linker exchange. Ab initio density functional theory (DFT) was employed to establish the single-crystal elastic constants of the nanoporous MIL-140(A-D) structures, generating a complete 3-D representation of the principal mechanical properties, encompassing the Young's modulus, shear modulus, linear compressibility and Poisson's ratio. Of particular interest, we discovered significantly high values of both positive and negative linear compressibility and Poisson's ratio, whose framework molecular mechanisms responsible for such elastic anomalies have been fully revealed. In addition to pinpointing large elastic anisotropy and unusual physical properties, we analyzed the bulk modulus of isoreticular Zr-MOF compounds to understand the framework structural resistance against the hydrostatic pressure, and determined the averaged mechanical behaviour of bulk (polycrystalline) MOF materials important for the design of emergent applications.
了解金属有机框架(MOF)的力学性能不仅对于实现强大的实际应用至关重要,而且对于推进支撑众多开放框架化合物灵活性的基础研究也至关重要。在此,我们展示了迄今为止关于MOF力学最全面的结构分析之一:阐明了一系列拓扑相关的基于Zr的MOF的复杂弹性响应,解释了所有重要的力学性能,并确定了由系统的有机连接体交换产生的主要趋势。采用从头算密度泛函理论(DFT)来确定纳米多孔MIL-140(A-D)结构的单晶弹性常数,生成主要力学性能的完整三维表示,包括杨氏模量、剪切模量、线性压缩率和泊松比。特别值得注意的是,我们发现了显著高的正、负线性压缩率和泊松比值,并且已经充分揭示了导致这种弹性异常的框架分子机制。除了确定大的弹性各向异性和异常的物理性质外,我们还分析了拓扑相关的Zr-MOF化合物的体积模量,以了解框架结构对静水压力的抗性,并确定了对于新兴应用设计很重要的块状(多晶)MOF材料的平均力学行为。