Suppr超能文献

用于非负约束同时稀疏恢复的贪心算法

Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery.

作者信息

Kim Daeun, Haldar Justin P

机构信息

Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089 USA.

出版信息

Signal Processing. 2016 Aug;125:274-289. doi: 10.1016/j.sigpro.2016.01.021. Epub 2016 Feb 6.

Abstract

This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure.

摘要

这项工作提出了一族贪心算法,用于联合重构一组向量,这些向量满足:(i)非负;(ii)在共享支撑集上同时稀疏。所提出的算法推广了先前旨在分别施加这些约束的方法。与先前用于稀疏恢复的贪心算法类似,所提出的算法迭代地识别有希望的支撑索引。与先前的方法不同,支撑索引选择过程已被调整,以优先选择与非负性和共享支撑约束都一致的索引。实证结果首次表明,相对于施加较少信号结构的现有贪心算法,同时使用同时稀疏性和非负性约束可以显著提高恢复性能。

相似文献

1
Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery.
Signal Processing. 2016 Aug;125:274-289. doi: 10.1016/j.sigpro.2016.01.021. Epub 2016 Feb 6.
2
Simultaneous Greedy Analysis Pursuit for compressive sensing of multi-channel ECG signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6385-8. doi: 10.1109/EMBC.2014.6945089.
3
Deep Learning of Part-Based Representation of Data Using Sparse Autoencoders With Nonnegativity Constraints.
IEEE Trans Neural Netw Learn Syst. 2016 Dec;27(12):2486-2498. doi: 10.1109/TNNLS.2015.2479223. Epub 2015 Oct 28.
4
Greedy Methods, Randomization Approaches, and Multiarm Bandit Algorithms for Efficient Sparsity-Constrained Optimization.
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2789-2802. doi: 10.1109/TNNLS.2016.2600243. Epub 2016 Sep 9.
5
Improving recovery of ECG signal with deterministic guarantees using split signal for multiple supports of matching pursuit (SS-MSMP) algorithm.
Comput Methods Programs Biomed. 2017 Feb;139:39-50. doi: 10.1016/j.cmpb.2016.10.014. Epub 2016 Oct 27.
6
Forward basis selection for pursuing sparse representations over a dictionary.
IEEE Trans Pattern Anal Mach Intell. 2013 Dec;35(12):3025-36. doi: 10.1109/TPAMI.2013.85.
7
Atom selection strategy for signal compressed recovery based on sensing information entropy.
ISA Trans. 2021 Aug;114:242-250. doi: 10.1016/j.isatra.2020.12.050. Epub 2020 Dec 28.
8
Embedding prior knowledge within compressed sensing by neural networks.
IEEE Trans Neural Netw. 2011 Oct;22(10):1638-49. doi: 10.1109/TNN.2011.2164810. Epub 2011 Sep 6.
9
Convolutional Sparse Support Estimator Network (CSEN): From Energy-Efficient Support Estimation to Learning-Aided Compressive Sensing.
IEEE Trans Neural Netw Learn Syst. 2023 Jan;34(1):290-304. doi: 10.1109/TNNLS.2021.3093818. Epub 2023 Jan 5.
10
A Bat-Inspired Sparse Recovery Algorithm for Compressed Sensing.
Comput Intell Neurosci. 2018 Oct 29;2018:1365747. doi: 10.1155/2018/1365747. eCollection 2018.

引用本文的文献

1
Extreme Compressed Sensing of Poisson Rates from Multiple Measurements.
IEEE Trans Signal Process. 2022;70:2388-2401. doi: 10.1109/tsp.2022.3172028. Epub 2022 May 3.
2
Mapping the rest of the human connectome: Atlasing the spinal cord and peripheral nervous system.
Neuroimage. 2021 Jan 15;225:117478. doi: 10.1016/j.neuroimage.2020.117478. Epub 2020 Nov 4.
3
Fast multi-component analysis using a joint sparsity constraint for MR fingerprinting.
Magn Reson Med. 2020 Feb;83(2):521-534. doi: 10.1002/mrm.27947. Epub 2019 Aug 16.

本文引用的文献

1
A majorize-minimize framework for Rician and non-central chi MR images.
IEEE Trans Med Imaging. 2015 Oct;34(10):2191-202. doi: 10.1109/TMI.2015.2427157. Epub 2015 Apr 28.
3
Sparsity Constrained Mixture Modeling for the Estimation of Kinetic Parameters in Dynamic PET.
IEEE Trans Med Imaging. 2014 Jan;33(1):173-85. doi: 10.1109/TMI.2013.2283229. Epub 2013 Nov 7.
4
Linear transforms for Fourier data on the sphere: application to high angular resolution diffusion MRI of the brain.
Neuroimage. 2013 May 1;71:233-47. doi: 10.1016/j.neuroimage.2013.01.022. Epub 2013 Jan 24.
6
Rank-Constrained Solutions to Linear Matrix Equations Using PowerFactorization.
IEEE Signal Process Lett. 2009;16(7):584-587. doi: 10.1109/LSP.2009.2018223.
7
Bayesian algorithm using spatial priors for multiexponential T₂ relaxometry from multiecho spin echo MRI.
Magn Reson Med. 2012 Nov;68(5):1536-43. doi: 10.1002/mrm.24170. Epub 2012 Jan 20.
8
Quantification of increased cellularity during inflammatory demyelination.
Brain. 2011 Dec;134(Pt 12):3590-601. doi: 10.1093/brain/awr307.
9
Diffusion MRI at 25: exploring brain tissue structure and function.
Neuroimage. 2012 Jun;61(2):324-41. doi: 10.1016/j.neuroimage.2011.11.006. Epub 2011 Nov 20.
10
Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom.
Neuroimage. 2011 May 1;56(1):220-34. doi: 10.1016/j.neuroimage.2011.01.032. Epub 2011 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验